Question	Scheme	Marks	AOs
4(a)	Attempts to compare the two position vectors. Allow an attempt using two of $\overrightarrow{A O}, \overrightarrow{O B}$ or $\overrightarrow{A B}$ $\text { E.g. }(-24 \mathbf{i}-10 \mathbf{j})=-2 \times(12 \mathbf{i}+5 \mathbf{j})$	M1	1.1b
	Explains that as $\overrightarrow{A O}$ is parallel to $\overrightarrow{O B}$ (and the stone is travelling in a straight line) the stone passes through the point O.	A1	2.4
		(2)	
(b)	Attempts distance $A B=\sqrt{(12+24)^{2}+(10+5)^{2}}$	M1	1.1b
	Attempts speed $=\frac{\sqrt{(12+24)^{2}+(10+5)^{2}}}{4}$	dM1	3.1a
	Speed $=9.75 \mathrm{~ms}^{-1}$	A1	3.2a
		(3)	
(5 marks)			
Alt(a)	Attempts to find the equation of the line which passes through A and B E.g. $y-5=\frac{5+10}{12+24}(x-12) \quad\left(y=\frac{5}{12} x\right)$	M1	1.1b
	Shows that when $x=0, y=0$ and concludes the stone passes through the point O.	A1	2.4

(a)

M1: Attempts to compare the two position vectors. Allow an attempt using two of $\overrightarrow{A O}, \overrightarrow{O B}$ or $\overrightarrow{A B}$
either way around.
E.g. States that $(-24 \mathbf{i}-10 \mathbf{j})=-2 \times(12 \mathbf{i}+5 \mathbf{j})$

Alternatively, allow an attempt finding the gradient using any two of $A O, O B$ or $A B$
Alternatively attempts to find the equation of the line through A and B proceeding as far as $y=\ldots x$ Condone sign slips.

A1: States that as $\overrightarrow{A O}$ is parallel to $\overrightarrow{O B}$ or as $A O$ is parallel to $O B$ (and the stone is travelling in a straight line) the stone passes through the point O. Alternatively, shows that the point $(0,0)$ is on the line and concludes (the stone) passes through the point O.
(b)

M1: Attempts to find the distance $A B$ using a correct method.
Condone slips but expect to see an attempt at $\sqrt{a^{2}+b^{2}}$ where a or b is correct
dM1: Dependent upon the previous mark. Look for an attempt at $\frac{\text { distance } A B}{4}$
A1: $9.75 \mathrm{~ms}^{-1} \quad$ Requires units

Question	Scheme	Marks	AOs
3(a)	Attempts $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$ or similar	M1	1.1b
	$\overrightarrow{A B}=-9 \mathbf{i}+3 \mathbf{j}$	A1	1.1b
		(2)	
(b)	Finds length using 'Pythagoras' $\|A B\|=\sqrt{(-9)^{2}+(3)^{2}}$	M1	1.1b
	$\|A B\|=3 \sqrt{10}$	A1ft	1.1b
		(2)	
(4 marks)			
Notes			
(a)			
M1: Attempts subtraction either way around.			
There must be some attempt to write in vector form. A1: cao (allow column vector notation but not the coordinate)			
Correct notation should be used. Accept $-9 \mathrm{i}+3 \mathrm{j}$ or $\binom{-9}{3}$ but not $\binom{-9 \mathrm{i}}{3 \mathrm{j}}$			
(b)			
Note that $\|A B\|=\sqrt{(9)^{2}+(3)^{2}}$ is also correct.			
Condone missing brackets in the expression $\|A B\|=\sqrt{-9^{2}+(3)^{2}}$			
A1ft:	o allow a restart usually accompanied by a diagram. $B \mid=3 \sqrt{10} \quad \mathrm{ft}$ from their answer to (a) as long as it has must be simplified, if appropriate. Note that $\pm 3 \sqrt{10}$ wo	j comp	
Note that, in cases where there is no working, the correct answer implies M1A1 in each part of this question			

Question	Marks	AOs	
16(i)	Explains that \mathbf{a} and \mathbf{b} lie in the same direction oe	B1	2.4
(ii)	(1)		

Notes: Score these two parts together.

(a)

M1: Attempts an allowable angle. (Either the "66.8", "23.2" or ("49.8" and "63.4")) $\tan \theta= \pm \frac{7}{3}, \tan \theta= \pm \frac{3}{7}, \tan \theta= \pm \frac{-2--5}{4--3}$ etc
There must be an attempt to subtract the coordinates (seen or applied at least once)
If part (b) is attempted first, look for example for $\sin \theta= \pm \frac{7}{" \sqrt{58} "}, \cos \theta= \pm \frac{7}{7 \sqrt{58}}$ " , etc They may use the cosine rule and trigonometry to find the two angles in the scheme. See above. Eg award for $\cos \theta=\frac{" 58 "+" 20 "-" 34 "}{2 \times " \sqrt{58} " \times " \sqrt{20} "}$ and $\tan \theta= \pm \frac{4}{2}$ or equivalent.
dM1: A full attempt to find the bearing. $180^{\circ}+\arctan \frac{7}{3}, 270^{\circ}-\arctan \frac{3}{7}$, $360^{\circ}-49.8^{\circ}-$ " 63.4°. It is dependent on the previous method mark.

A1: \quad Bearing $=\operatorname{awrt} 246.8^{\circ}$ oe. Allow S $66.8^{\circ} \mathrm{W}$

Question	Scheme	Marks	AOs
2	Attempt to differentiate	M1	1.1a
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=4 x-12$	A1	1.1b
	Substitutes $x=5 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots$	M1	1.1b
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=8$	A1ft	1.1b
(4 marks)			
Notes:			
M1: Differentiation implied by one correct term A1: Correct differentiation M1: Attempts to substitute $x=5$ into their derived function A1ft: Substitutes $x=5$ into their derived function correctly i.e. Correct calculation of their $\mathrm{f}^{\prime}(5)$ so follow through slips in differentiation			

Question	Scheme	Marks	AOs
3(a)	Attempts $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$ or similar	M1	1.1b
	$\overrightarrow{A B}=5 \mathbf{i}+10 \mathbf{j}$	A1	1.1b
		(2)	
(b)	Finds length using 'Pythagoras' $\|A B\|=\sqrt{(5)^{2}+(10)^{2}}$	M1	1.1b
	$\|A B\|=5 \sqrt{5}$	A1ft	1.1b
		(2)	
(4 marks)			
Notes:			
(a) M1: Attempts subtraction but may omit brackets A1: cao (allow column vector notation)			
(b) M1: Correct use of Pythagoras theorem or modulus formula using their answer to (a) A1ft: $\|A B\|=5 \sqrt{5} \mathrm{ft}$ from their answer to (a)			
Note that the correct answer implies M1A1 in each part of this question			

