www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
4 (a)	Attempts to compare the two position vectors.		
	Allow an attempt using two of \overrightarrow{AO} , \overrightarrow{OB} or \overrightarrow{AB}	M1	1.1b
	E.g. $(-24\mathbf{i}-10\mathbf{j}) = -2 \times (12\mathbf{i}+5\mathbf{j})$		
	Explains that as \overrightarrow{AO} is parallel to \overrightarrow{OB} (and the stone is	A1	2.4
	travelling in a straight line) the stone passes through the point O.		
		(2)	
(b)	Attempts distance $AB = \sqrt{(12+24)^2 + (10+5)^2}$	M1	1.1b
	Attempts speed = $\frac{\sqrt{(12+24)^2 + (10+5)^2}}{4}$	dM1	3.1a
	Speed = 9.75 ms^{-1}	A1	3.2a
		(3)	
		(5 marks
	Attempts to find the equation of the line which passes through <i>A</i>		
Alt(a)	and B $5+10$ 5	M1	1.1b
	E.g. $y-5 = \frac{5+10}{12+24}(x-12)$ $(y = \frac{5}{12}x)$		
	Shows that when $x = 0$, $y = 0$ and concludes the stone passes	A1	2.4
	through the point <i>O</i> . Notes		
AB either E.g. S Alterr	apts to compare the two position vectors. Allow an attempt using two way around. States that $(-24\mathbf{i} - 10\mathbf{j}) = -2 \times (12\mathbf{i} + 5\mathbf{j})$ hatively, allow an attempt finding the gradient using any two of <i>AO</i> , hatively attempts to find the equation of the line through <i>A</i> and <i>B</i> pro <i>x</i> Condone sign slips.	OB or AB	
straigh	that as \overrightarrow{AO} is parallel to \overrightarrow{OB} or as AO is parallel to OB (and the stone at line) the stone passes through the point O . Alternatively, shows that line and concludes (the stone) passes through the point O .		
	ants to find the distance AD		
	appendix to find the distance AB using a correct method. Some slips but expect to see an attempt at $\sqrt{a^2 + b^2}$ where a or b is con-	rrect	
dM1: Dep	endent upon the previous mark. Look for an attempt at $\frac{\text{distance } AB}{4}$		
A1. 075	ms^{-1} Requires units		

Question	Scheme	Marks	AOs
3 (a)	Attempts $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or similar	M1	1.1b
	$\overrightarrow{AB} = -9\mathbf{i} + 3\mathbf{j}$	A1	1.1b
		(2)	
(b)	Finds length using 'Pythagoras' $ AB = \sqrt{(-9)^2 + (3)^2}$	M1	1.1b
	$ AB = 3\sqrt{10}$	A1ft	1.1b
		(2)	
		(4	marks
A1: ca	here must be some attempt to write in vector form. o (allow column vector notation but not the coordinate) orrect notation should be used. Accept $-9i+3j$ or $\begin{pmatrix} -9\\ 3 \end{pmatrix}$ but not $\begin{pmatrix} 1\\ 3 \end{pmatrix}$	$\begin{pmatrix} -9i \\ 3j \end{pmatrix}$	
No Cor	prrect use of Pythagoras theorem or modulus formula using their and the that $ AB = \sqrt{(9)^2 + (3)^2}$ is also correct. Indone missing brackets in the expression $ AB = \sqrt{-9^2 + (3)^2}$ lso allow a restart usually accompanied by a diagram.	swer to (a)	
A1ft:	$ AB = 3\sqrt{10}$ ft from their answer to (a) as long as it has both an i at must be simplified, if appropriate. Note that $\pm 3\sqrt{10}$ would be M1		nent.
	in cases where there is no working, the correct answer implies M1.	A1 in each p	oart of

this question

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
16(i)	Explains that a and b lie in the same direction oe	B1	2.4
		(1)	
(ii)	$ \mathbf{m} = 3$	M1	1.1b
	Attempts $\frac{\sin 30^\circ}{6} = \frac{\sin \theta}{3}$	M1	3.1a
	$\theta = $ awrt 14.5°	A1	1.1b
	Angle between vector \mathbf{m} and vector $\mathbf{m} - \mathbf{n}$ is awrt 135.5°	A1	3.2a
		(4)	
		(5 marks)
	Notes		
Mark p Do not Do not (ii) M1: A tria Look Condo Do no M1: Correc If a tri This i If the Do no	t any valid response E.g The lines are collinear. Condone "They are positively. ISW after a correct answer t accept "the length of line a +b is the same as the length of line a + t t accept $ \mathbf{a} $ and $ \mathbf{b} $ are parallel. ngle showing 3, 6 and 30° in the correct positions. for 6' opposite 30° with another side of 3. one the triangle not being obtuse angled and not being to scale. It condone negative lengths in the tringle. This would automatically let sine rule statement with the sides and angles in the correct position iangle is drawn then the angles and sides must be in the correct position s not dependent so allow recovery from negative lengths in the triangle candidate has not drawn a diagram then correct sine rule would be N at accept calculations where the sides have a negative length. Eg	be M0 ns. tions. gle. //1 M1	
A1: $\theta = av$	vrt 14.5°	5 –5	
A1: CSOa	awrt 135.5°		

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
2(a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Attempts to find an "allowable" angle Eg tan $\theta = \frac{7}{3}$	M1	1.1b
	A full attempt to find the bearing Eg 180°+"67°"	dM1	3.1b
	Bearing = awrt 246.8°	A1	1.1b
		(3)	
(b)	Attempts to find the distance travelled = $\sqrt{(4-3)^2 + (-2+5)^2} = (\sqrt{58})$	M1	1.1b
	Attempts to find the speed = $\frac{\sqrt{58}}{2.75}$	dM1	3.1b
	= awrt 2.77 km h ⁻¹	Al	1.1b
		(3)	
		(6 marks)

Notes: Score these two parts together.

(a) M1: Attempts an allowable angle. (Either the "66.8", "23.2" or ("49.8" and "63.4")) $\tan \theta = \pm \frac{7}{3}, \tan \theta = \pm \frac{3}{7}, \tan \theta = \pm \frac{-2 - -5}{4 - -3}$ etc There must be an attempt to subtract the coordinates (seen or applied at least once) If part (b) is attempted first, look for example for $\sin \theta = \pm \frac{7}{\sqrt{58}}, \cos \theta = \pm \frac{7}{\sqrt{58}}$, etc They may use the cosine rule and trigonometry to find the two angles in the scheme. See above. Eg award for $\cos \theta = \frac{"58" + "20" - "34"}{2 \times \sqrt{58}}$ and $\tan \theta = \pm \frac{4}{2}$ or equivalent. **dM1:** A full attempt to find the bearing. $180^\circ + \arctan \frac{7}{3}, 270^\circ - \arctan \frac{3}{7},$

 360° - "49.8°" - "63.4°". It is dependent on the previous method mark.

A1: Bearing = awrt 246.8° oe. Allow S 66.8° W

Question	Scheme	Marks	AOs
2	Attempt to differentiate	M1	1.1a
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 12$	A1	1.1b
	Substitutes $x = 5 \implies \frac{dy}{dx} =$	M1	1.1b
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 8$	Alft	1.1b
	(4 ma		
Notes:			
	erentiation implied by one correct term		

- A1: Correct differentiation
- M1: Attempts to substitute x = 5 into their derived function
- A1ft: Substitutes x = 5 into their derived function correctly i.e. Correct calculation of their f'(5) so follow through slips in differentiation

Question	Scheme	Marks	AOs
3 (a)	Attempts $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or similar	M1	1.1b
	$\overrightarrow{AB} = 5\mathbf{i} + 10\mathbf{j}$	A1	1.1b
		(2)	
(b)	Finds length using 'Pythagoras' $ AB = \sqrt{(5)^2 + (10)^2}$	M1	1.1b
	$ AB = 5\sqrt{5}$	Alft	1.1b
		(2)	
		(4 n	narks)
Notes:			
	npts subtraction but may omit brackets allow column vector notation)		
	ect use of Pythagoras theorem or modulus formula using their ar $=5\sqrt{5}$ ft from their answer to (a)	nswer to (a)	
Note that th	e correct answer implies M1A1 in each part of this question		