

GCE

Mathematics A

H240/02: Pure Mathematics and Statistics

Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations and abbreviations

Annotation in scoris	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
WWW	Without wrong working
WWW AG	Without wrong working Answer given
AG	Answer given

С

June 2019

Subject-specific Marking Instructions for A Level Mathematics A

- Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader. The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

f

g

h

www.yesterdaysmathsexam.com Mark Scheme

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only – differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-guestion.
 - We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.

When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.

When a value is not given in the paper accept any answer that agrees with the correct value to **3 s.f.** unless the question specifically asks for another level of accuracy.

NB for Specification B (MEI) the rubric is not specific about the level of accuracy required, so this statement reads "2 s.f".

Follow through should be used so that only one mark is lost for each distinct accuracy error.

Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.

- For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error. If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- If in any case the scheme operates with considerable unfairness consult your Team Leader.

www.yesterdaysmathsexam.com Mark Scheme

			FinalVersion						
(Juesti o	n	Answer	Mark	AO	Guidance			
			NB Answers must be correct to 3 sf, except where	<u>e otherw</u>	<u>ise indi</u>	<u>cated</u> . If correct answer seen (to \geq 3 sf), is	gnore later rounding.		
1						Ignore incorrect \int or d <i>x</i> in all parts			
1	(a)	(i)	$\frac{(2x+1) \times 2x - x^2 \times 2}{(2x+1)^2} \text{ oe}$ $(\text{eg} = \frac{2x^2 + 2x}{(2x+1)^2} \text{ or } \frac{2x(x+1)}{(2x+1)^2} \text{ oe})$ Alternative method $x^2(-2)(2x+1)^{-2} + 2x(2x+1)^{-1} \text{ oe}$	B1 B1 B1	1.1a 1.1 1.1	$2x(2x + 1) \underline{\text{or}} - 2x^{2} \text{ oe in numerator} \qquad B1$ Correct denominator B1 Correct numerator B1 No need to see this $\pm 2x^{2}(2x + 1)^{-2} \qquad \text{oe} \qquad B1$	Condone missing brackets 1st B1 Allow correct equivalent forms ISW for further "simplifications" Allow correct equivalent forms		
				[3]		$+ 2x(2x + 1)^{-1} \text{oe} \qquad \qquad \text{B1}$ All correct $\qquad \qquad \text{B1}$	ISW for further "simplifications"		
1	(a)	(ii)	$(2x-3)\sec^2(x^2-3x)$ oe	B1 B1 [2]	1.1a 1.1	B1 for $\sec^2(x^2 - 3x)$ B1 for all correct	Condone missing brackets 1st B1 Condone $\sec^2 (x^2 - 3x)(2x - 3)$ ISW for further "simplifications"		
			Allow without mod in both parts (b) and (c)						
1	(b)		$x = (u + 1)^2$, $\frac{dx}{du} = 2(u + 1)$ oe or $\frac{du}{dx} = 0.5x^{-0.5}$ oe	M1	1.1 a	EITHER attempt x in terms of u & diff OR attempt $\frac{du}{dx}$ & obtain $k x^{-0.5}$ oe	Allow in form $dx = \dots$ or $du = \dots$		
			$2\int \frac{(u+1)}{u} du$ or $2\int \left(1+\frac{1}{u}\right) du$ oe	A1	2.5	Allow $k \int \frac{(u+1)}{u} du$ or $k \int \left(1 + \frac{1}{u}\right) du$	or $\int \frac{(ku+j)}{u} du$ or $\int \left(k+\frac{j}{u}\right) du$		
			$=2(u+\ln u/) \qquad (+c)$	A1	2.1	Allow without $+ c$ here			
			$= 2(\sqrt{x} - 1 + \ln \sqrt{x} - 1) + c \text{ oe}$ or $2(\sqrt{x} + \ln \sqrt{x} - 1) + c \text{ oe}$	A1	1.1	All correct incl + c	Not penalise $+c$ in both (b) &(c)		
			or $2(\sqrt{x} + \ln(\sqrt{x} - 1)) + c$ oe or $2\sqrt{x} + \ln(\sqrt{x} - 1)^2 + c$ oe				ISW for further "simplifications"		
				[4]			Integration by parts: Use same scheme.		

1	(c)		$\ln 2x^2 - 8x - 1 $ or $\ln \frac{1}{2}x^2 - 2x - \frac{1}{4} $ seen	M1	1.2	or $u = 2x^2 - 8x - 1$ and $\ln u $ seen	or $u = x - 2$ and $\ln 2u^2 - 9 $ seen
			$\frac{1}{4}\ln 2x^2 - 8x - 1 + c \text{or } \frac{1}{4}\ln \frac{1}{2}x^2 - 2x - \frac{1}{4} + c$	A1	1.1	All correct including + c Correct answer seen: M1A1 even if eg	Not penalise $+c$ in both (b) &(c)
				[3]		$(x-2)\frac{\ln 2x^2-8x-1 }{4x-8} = \frac{1}{4}\ln 2x^2-8x-1 $	ISW for further "simplifications
2	(a)		= -48384 or -48400	[2] B1 [1]	1.1	Allow –48384 <i>x</i> ⁵	
2	(b)	(i)	$1 + 0.5 \times 3x + \frac{0.5 \times (-0.5)}{2} \times (3x)^2$			M1 for at least 3 terms correct	
			+ $\frac{0.5 \times (-0.5)(-1.5)}{3!} \times (3x)^3$	M1	1.1 a	Condone any missing brackets	SC $1 + \frac{3}{2}x - \frac{3}{8}x^2 + \frac{3}{16}x^3$: M1
			$= 1 + \frac{3}{2}x - \frac{9}{8}x^2 + \frac{27}{16}x^3$ or $1 + 1.5x - 1.125x^2 + 1.6875x^3$	A1 A1	1.1 1.1	A1 for 3 terms correct A1 for all correct	
				[3]			
2	(b)	(ii)	$-\frac{1}{3} < x < \frac{1}{3}$	B1	1.2	Allow $ x < \frac{1}{3}$	
				[1]			
2	(b)	(iii)	Sub $x = 0.01$ in their expansion	M1	3.1 a		Other correct methods may be seen, eg subst $x = 0.2 \& \sqrt{1.6}$
			gives $\sqrt{1.03} = 1.014889$	A1	1.1	Allow 1.01489 here (5 dps for series)	
			From series $\sqrt{103} = 10.14889(188)$ From calculator $\sqrt{103} = 10.14889(157)$ (Hence expansion may be correct)	A1 [3]	2.2b	If no working seen, 10.1488919 or better must be seen as evidence that series has been used. Both these must be seen for A1 Allow without statement	5dps for $\sqrt{103}$ in both

www.yesterdaysmathsexam.com

Mark Scheme

3	(a)	(i)	$(x-3)^2 + (y+4)^2 = 4\cos^2\theta + 4\sin^2\theta$	M1	3.1 a	or $\left(\frac{x-3}{2}\right)^2 + \left(\frac{y+4}{2}\right)^2 = \cos^2\theta + \sin^2\theta$	Condone sign errors or one arith slip or missing brackets for M1
			$\Rightarrow (x-3)^2 + (y+4)^2 = 4$ oe ISW	A1	2.1	or $\left(\frac{x-3}{2}\right)^2 + \left(\frac{y+4}{2}\right)^2 = 1$ oe	or $y = -4 + 2\sqrt{1 - (\frac{x-3}{2})^2}$ M1A1 or similar with $x =$
						or $\cos^{-1}\left(\frac{x-3}{2}\right) = \sin^{-1}\left(\frac{y+4}{2}\right)$ M1A1	or similar with $x =$ or $y = -4+2\sin(\cos^{-1}\frac{x-3}{2})$ M1A1 or similar with $x =$
				[2]		ISW for all answers	
3	(a)	(ii)	Centre (3, –4), radius 2	[2] B1f	2.2a	ft their (i) if both consistent with (i) But if absolutely correct, not ft: B1.	
3	(b)		DR	[1]			
•	(~)		NB Allow decimals to 2 sf instead of surds				
			thoughout, except answer to 3 sf			du t	
			$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	3.1 a	Attempt diff x & y wrt t & find $\frac{dy}{dt} \div \frac{dx}{dt}$	
			$= -\frac{1}{2}\cot t \text{or} -\frac{1}{2}\frac{\cos t}{\sin t}$	A1	1.1	soi	
			$t = \frac{\pi}{6}$: $\frac{dy}{dx} = -\frac{1}{2} \cot \frac{\pi}{6}$ or $-\frac{\sqrt{3}}{2}$ or	M1	1.1	Substitute $t = \frac{\pi}{6}$ in their $\frac{dy}{dx}$	Allow sign error
			Alternative methods for gradient				
			$\left(\frac{x}{4}\right)^2 + \left(\frac{y}{2}\right)^2 = 1, \qquad \frac{x}{8} + \frac{y}{2}\frac{dy}{dx} = 0 \qquad M1$			Attempt cartesian equn & differentiation	$\frac{\rm d}{{\rm d}x}(0.5(16-x^2)^{-0.5})$
			$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{4y} $ A1			soi	or $\frac{dy}{dx} = \frac{1}{4}(16 - x^2)^{-0.5}(-2x)$ oe
			$t = \frac{\pi}{6}: \ \frac{dy}{dx} = -\frac{4\cos(\frac{\pi}{6})}{8\sin(\frac{\pi}{6})} \text{ or } -\frac{1}{2}\cot\frac{\pi}{6} \text{ or } -\frac{\sqrt{3}}{2} \text{ M1}$			Substitute $t = \frac{\pi}{6}$ in x (and y) & their $\frac{dy}{dx}$	

www.yesterdaysmathsexam.com Mark Scheme

			Equn of <i>L</i> is $y - 2\sin\frac{\pi}{6} = -\frac{\sqrt{3}}{2}(x - 4\cos\frac{\pi}{6})$ oe or $y - 1 = -\frac{\sqrt{3}}{2}(x - 2\sqrt{3})$ oe $0 - 1 = -\frac{\sqrt{3}}{2}x + 3$ oe Cuts at $(\frac{8\sqrt{3}}{3}, 0)$ oe or (4.62, 0) (3 sf)	M1 M1 A1 [6]	1.1	or $y=-\frac{\sqrt{3}}{2}x+c$ $\underline{\&}$ subst $(4\cos\frac{\pi}{6}, 2\sin\frac{\pi}{6})$ or $y=-\frac{\sqrt{3}}{2}x+4$ oe or $0=-\frac{\sqrt{3}}{2}x+4$ oe Allow just $\frac{8\sqrt{3}}{3}$ or 4.62 (3 sf)	ft their grad (not -ve reciprocal) Must not involve <i>t</i> This mark may be implied by next mark Subst $y = 0$ in their line equn, not involving <i>t</i> Allow equivalents, eg $\frac{8}{\sqrt{3}}$
4			In all parts ignore nos except 20, & 1020			BOD if describe growth rather than <u>rate</u> in (a) and (b)	Condone muddle between <i>P</i> and growth of <i>P</i> in (a) and (b)
4	(a)		A: Growth (rate) increases, then decreases Grows slowly, then quickly, then slowly B: Growth (rate) decreases Grows quickly then slowly Both	B1 [1]	2.2b	Allow increase, constant, then decrease or "levels off", "tails off", "plateaus" Allow "levels off", "tails off", "plateaus"	NOT " <i>P</i> " decreases, for A or B Ignore "exponentially"
4	(b)	(i)	A: <i>P</i> (decreases and) tends to 20 or (Decreases and) doesn't go below 20	[1]	3.4	Allow (Decrease and) reach 20, Must mention 20 (as population, not years)	Ignore all else
4	(b)	(ii)	B: <i>P</i> tends to 1020 oe <i>P</i> doesn't exceed 1020	B1 [1]	3.4	Growth is asymptotic around 1020 Settles at 1020. Saturates at 1020 Converges to 1020. Allow reaches 1020 Plateaus at 1020. Asymptote at 1020 Must mention 1020	NOT: Pop increases, but slowly Diverges to 1020 Tends to 1020, then down Ignore all else
4	(c)	(i)	A: Food (almost) runs out, or is used up oe or becomes very low or there will be a shortage oe or begins to run out	B1 [1]	3.5a	or will only support a population of 20 Won't sustain large nos. Insufficient NB "Limited" allowed in c(ii), not c(i)	NOT: just Limited, Finite NOT: just "Decreases" Ignore all else
4	(c)	(ii)	B: Food sufficient to support a pop ≈ 1020 Enough to sustain equilibrium (or population) Barely enough, can't support increase in P Food limited so pop can't continue to grow	B1 [1]	3.5a	Stays stable Sustainable Constant	Must imply at least two of: 1. Food won't run out <u>and</u> 2. Food limited or equilibrium 3. Can't support increase in <i>P</i> Ignore all else

www.yesterdaysmathsexam.com Mark Scheme

5	(a)		An example of a correct method:			Other correct methods may be seen eg $lr = 4$: B1, find h ito $l \& r$: B1,	NB Must be <u>clearly</u> using this alternative method to score any
			$l = \frac{4}{r}$ or $l = \frac{4\pi}{r\pi}$ exactly (not $lr = 4$)	B1	3.1 a	Subst <i>h</i> & <i>lr</i> into <i>V</i> : M1, convincing: A1 Express <i>l</i> correctly in terms of <i>r</i> May be implied	marks on this scheme. Allow $l = \frac{4-r^2}{r}$ oe B1
			$(h = \sqrt{l^2 - r^2})$ $h = \sqrt{\frac{16}{r^2} - r^2}$ or $\frac{\sqrt{16 - r^4}}{r}$ oe	B1	1.1	Express h (or h^2) correctly in terms of r alone	$(h^2 = l^2 - r^2)$ or $h^2 = \frac{16}{r^2} - r^2$ or $\frac{16 - r^4}{r^2}$
			$V = \frac{1}{3}\pi r^2 \sqrt{\frac{16}{r^2} - r^2} \qquad \text{or } \frac{1}{3}\pi r^2 \frac{\sqrt{16 - r^4}}{r} \text{ oe}$	M1	1.1	Sub their <i>h</i> (in terms of <i>r</i> alone) into $\frac{1}{3}$ $\pi r^2 h$	
			$(=\frac{\pi}{3}\sqrt{16r^2-r^6} \ AG)$	A1 [4]	2.1	Must see a correct previous expression in terms of r only, and the answer	
5	(b)	DR	$\frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{\pi}{3}\sqrt{16r^2 - r^6}\right)$	M1	1.1a	Attempt differentiate V or $\frac{V}{\pi}$ or $3V$	or $\frac{3V}{\pi}$ or $\sqrt{16r^2 - r^6}$ or $16r^2 - r^6$
			$\frac{\pi (32r - 6r^5)}{3 \times 2\sqrt{16r^2 - r^6}} = 0 \text{oe}$	A1	2.1	Correct derivative of one of the above Condone missing brackets.	All subsequent marks can be scored even if this A1 not scored.
			(Their derivative = 0) $r = \frac{2}{\sqrt[4]{3}}$ or $\sqrt[4]{\frac{16}{3}}$ oe or 1.52 (3 sf) Allow 1.5	A1	1.1	Lose this mark if incorrect values of r also given, eg $r = \pm 2$ obtained from	
			or $r^2 = \frac{4}{\sqrt{3}}$	B1f	3.2a	$(16r^2 - r^6)^{-\frac{1}{2}} = 0$ Comment needed,	Allow without $r = 0$
			$r = -\frac{2}{4\sqrt{3}}$ or -1.52 invalid OR $r = 0$ invalid or $r > 0$	DII	J.2a	about their negative r (ft) or about $r = 0$	T & I: 5.20 (3sf) SC B2
			$(V_{\text{max}} = \frac{\pi}{3}\sqrt{16 \times 1.51967^2 - 1.51967^6})$ Max V = 5.20 (3 sf) Allow 5.2 or a.r.t. 5.2	A1	1.1	Condone $V = 5.20 \text{ m}^3$	5.2 (2 sf) SC B1
			1144 y = 5.26 (5 6) 1110 w 5.2 of u.r.t. 5.2	[5]	1.1		

www.yesterdaysmathsexam.com Mark Scheme

6		$2^{2k} - 1$ or $4^k - 1$ (where k is an integer > 1)	M1	3.1a	or $2^{2k+2}-1$ or $2^{2k+4}-1$ Allow $2^{2n}-1$	Induction:
		$ = (2^k)^2 - 1 = (2^k - 1)(2^k + 1) $	A 1	2.1	$=(2^{k+1}-1)(2^{k+1}+1)$ oe	Assume $2^k - 1$ is \div by 3 (k even) M1 Let $2^k - 1 = 3p$ (p integer)
		= (2 - 1)(2 + 1)	A1	2.1	$= (2^{k-1})(2^{k+1}) \text{ of } (2^{k+2}-1)(2^{k+2}+1) \text{ of } (2^{k+2}-1)(2^{k+2}+1)(2^{k+2}-1)(2^{k+2}+1)(2^{k+2}-1)(2^{k+2}+1)(2^{k+2}-1)(2^{k+2}+1)(2^{k+2}-1)(2^{k+2}+1)(2^{k+2}-1)(2^{k+2}+1)(2^{k+2}-1)(2^{k+2$	Let $2^k - 1 = 3p$ (<i>p</i> integer)
		$(2^{k} + 1) > 1$ and $k > 1$, hence $(2^{k} - 1) > 1$	M1	1.1		$2^{k+2} - 1 = 4 \times 2^k - 1 $ M1
		Hence $(2^k - 1)(2^k + 1)$ is the product of two				$=4\times 2^{k}-4+3$
		integers, both > 1 , and hence $2^n - 1$ is not prime	A1	2.2a	Both statements needed	$=4(2^{k}-1)+3$
						$= 4 \times 3p + 3 \qquad A1$ which is ÷ by 3
						When $k = 2$: $2^2 - 1 = 3$ so \div by 3 A1
			[4]			Hence true for all even <i>n</i> . Claim true
7		DR				
		$u^{2} = 36x^{4} + 12x^{3} + x^{2}$ So $36x^{4} + 12x^{3} + 7x^{2} + x - 2 = u^{2} + 6x^{2} + x - 2$	M1	3.1a	$ (36x^4 + 12x^3 + 7x^2 + x - 2) \div (6x^2 + x) $ = 6x ² + x + 1 rem -2	
		$50\ 50x^{2} + 12x^{2} + 7x^{2} + x - 2 = u^{2} + 0x^{2} + x - 2$			$= 6x^{-} + x + 1$ Term -2	or attempt \div LHS by $(6x^2 + x)$, at least 2 terms correct
					$((6x^2 + x) (6x^2 + x + 1) = 2)$	or obtain any correct equn in
						terms of x and u
		Equn reduces to $u^2 + u - 2 = 0$	A1	2.1	u(u+1) = 2	
		u = -2 or 1	A1	1.1	BC	1. [17]
		$6x^2 + x = -2$ has no roots because $\Delta = 1 - 48 < 0$	B1	3.2a	Must see correct calc'n for Δ and "<	0" or $x = \frac{-1 \pm \sqrt{47i}}{12}$ given instead of
					for their quadratic equation	"no roots" etc
		$6x^2 + x = 1$ has roots $x = \frac{1}{3}$ or $-\frac{1}{2}$	A1	1.1	BC Ignore any answers from $u = -2$	2
		$3 - \frac{1}{3} - \frac{1}{2}$		1.1		
					SC If M1 gained but incorrect or inadequate method & correct answer	Otherwise correct ans without any correct working: no marks.
					M1A0A0B0A1	(Because DR)
			[5]			(
8	(a)	65	B1	1.1		
		Quartiles are 76 and 61 = 15	M1 A1	1.1 1.1	Allow (75 to 77) and (59 to 63) Must come from 76 – 61	
		- 15	AI	1.1	SC Misread 5 $6 = 5.6$: lose B1 onl	V
			[3]			
8	(b)	Mean = 69	B1	1.1	Allow 6.9	
		sd = 10.5 (3 sf)	B1	1.1	Allow 1.05 (3 sf)	

www.yesterdaysmathsexam.com Mark Scheme

					[2]			
8	(c)		Less (or not) affected by Mean (more) affected b	y the outlier or anomaly 99 y the outlier of 99	B1 [1]	1.1	oe, but must mention 99 Allow "Median is less skewed by the 99"	Ignore all else, eg "more accurate"
9	(a)	(i)	0.761 or 0.762 (3 sf)		B1 [1]	1.1	BC Allow 0.76	
9	(a)	(ii)	62.0 (3 sf)		B1 [1]	1.1	BC Allow 62 or 61.9	Allow $m \ge 62.0$
9	(a)	(iii)	Use of \overline{X} eg " \overline{X} " or "	mean" or $\frac{18}{10}$ or $\sqrt{\frac{18}{10}}$	M1	1.1a	$\mu = 550$ seen or implied	
			$\overline{X} \sim N(55, \frac{18}{10})$		M1	3.3	$\Sigma X \sim N(550, 180)$ Correct	May be implied
			$P(\overline{X} < \frac{530}{10}) dep \ \sigma^2 =$	$=\frac{18}{10}$	M1	3.4	P(Σ <i>X</i> < 530) dep σ^2 = 180	Stated or implied
			= 0.0680 (3 sf)		A1	1.1	= 0.0680 (3 sf) Allow 0.068	Correct answer from limited (or no) working: M1M1M1A1
					[4]			
9	(b)		P(Y < 72) = 0.75 $\Phi^{-1}(0.75)$ or 0.674	P(Y < 62) = 0.25 $\Phi^{-1}(0.25)$ or -0.674	M1 M1	3.1b 2.4	oe May be implied, eg on diagram ±0.674 implies M1M1 Allow 0.67	NB $P(62 < Y < 72) = 0.5$ no mks yet
			$\frac{72-67}{\sigma}$	$\frac{62-67}{\sigma}$	M1	2.1		M1M1M1 may be implied by A1
			$\frac{72-67}{\sigma} = 0.674$	$\frac{62-67}{\sigma} = -0.674$	A1	1.1	oe, eg 5 = 0.674 σ Al for correct equn, allow 0.67	Must be seen
			σ = 7.41 or 7.42 (3 sf)		A1	1.1	SC correct answer with no working or irrelevant working: SC B3 (because "determine" rather than "find")	or SC B2 if correct to 2 sf
			Trial and Improvemen $\Phi^{-1}(0.75)$ or 0.674 or		M2		May be implied	
			eg $\sigma = 8$: 67 - 8×0.6 $\sigma = 7$: 67 - 7×0.6	674 = 61.6	M1 A1		At least one correct trial Trials leading to values either side of 62	
					A1		Correct trial using σ = 7.41 or 7.42 and conclusion σ = 7.41 or 7.42	

www.yesterdaysmathsexam.com Mark Scheme

10		[5]			
10	See the exemplars at the end of the MS				TO 1 (11) (
	Allow 2 sf throughout	D1	11		If 1-tail test:
	H ₀ : $\mu = 0.034$ H ₁ : $\mu \neq 0.034$ where $\mu = (pop)$ mean pollutant level	B1 B1	1.1 2.5	Subtract B1 for each error eg:1-tailB1B0undefined μ B1B0	H ₀ : $\mu = 0.034$, defined μ , B1 H ₁ : $\mu < 0.034$ B0
	Allow any letter (except X and \overline{X} : B0B0)			not in terms of parameterB1B0 μ = sample mean impliedB1B0Not include value 0.034B0B0eg H_0 = 0.034 etc:B0B0	
	N(0.034, $\frac{0.0000409}{50}$)& $\overline{X} < 0.0325$ (condone >, =) or $\frac{a - 0.034}{0.00640 \div \sqrt{50}} = -1.96$	M1	3.3	Stated or implied eg by 0.0486 or 0.951 or 0.322 (2 sf) even if within incorrect statement eg $P(X = 0.0325) = 0.0486$	As LH column M1
	P($\overline{X} < 0.0325$) = 0.0486 or CV is 0.0322 or acceptance region is 0.0322 to 0.0358 or P($\overline{X} > 0.0325$) = 0.951	A1*	3.4	BC or $\frac{0.0325 - 0.034}{0.00640 \div \sqrt{50}} = -1.66$	P($\overline{X} < 0.0325$) = 0.0486 or CV is 0.0325(1) A1
	0.0486 > 0.025 or 0.0325 > 0.0322 or 0.0325 is in AR or 0.951 < 0.975 A1A1	A1	1.1	or 1.66 < 1.96 or -1.66 > -1.96 dep A1* Must be seen, allow on diag	Comp 0.05 or ± 1.645 A1 or 0.0325 < 0.0325(1) or 0.0325 is within CR No more marks
	Do not reject H_0 Or Insufficient (or No) evidence to reject H_0 Allow Accept H_0	M1	1.1	Dep 0.0486 or 0.0322 or -1.66 <u>or</u> 0.951 < 0.975 seen, <u>or</u> P(\overline{X} < 0.0325) stated or implied (possibly with wrong prob leading to opposite conclusion**) but 0 if.951 > 0.025 M0	May be implied by conclusion Condone Reject H ₁
	Insufficient (or No) evidence that (mean) pollutant level has changed oe or eg "It is unlikely that level has changed"	A1f	2.2b	In context. Context may be implied by eg "level" or "pollutant"	Not "There is evidence that mean level has not changed" A0 Not definite, eg

www.yesterdaysmathsexam.com Mark Scheme

[["We can assume that level hasn't changed"	[ft only ** above	"Mean level has not changed "A0
				[7]			
11	(a)		k > 1.4 (allow $k > 1.1$ to 1.6) $k < 0.25$ (allow $k < 0.2$ to 0.3)	B1 B1	2.2b 2.2b	Allow \geq and \leq SC: 0.25 < k < 1.4: B1B0 (ranges as on left)	Allow "x"
			or $1.4 < k <$ B1 $< k < 0.25$ (ranges as above) B1	[2]			
11	(b)	(i)	0.797 > 0.5577 or -0.797 < -0.5577 or -0.797 > 0.5577	B2 [2]	3.1b 3.2a	0.797 > 0.6055 or $-0.797 < -0.6055$ B1 ± 0.5577 B1	Allow \geq or \leq
11	(b)	(ii)	There are clusters (or groups etc.) Apparent good correlation caused by clusters or Two clusters with no –ve corr'n within them or a comment similar to one of the above. AND Conclusion unreliable or Value of <i>r</i> is misleading oe	B1* B1 dep B1*	2.3 3.5b	or Not bivariate normal distribution B1 so use of tables for <i>r</i> not valid B1	NOT Too scattered Not represent whole pop Small sample Clusters not on reg line B1B0
11	(c)		High prop of 65+or Low prop of 18-24Prop of young very similar, or ≈ 0.06 Proportion of senior to young is high	[2] B1	2.2b	If consider only <u>one</u> age-group, must be proportion not number If consider <u>both</u> age-groups, allow eg Higher number of seniors than young or Many seniors, few young	NOT: Similar proportions of 65+ Population is elderly
11	(d)		Top left points contain high prop of 18-24s. (So these LAs may be areas where there are universities or where they can recruit)	[1]	2.2b	Shows places where large nos of 18-24s Shows where to focus recruiting. So universities can recruit. 18-24s are their target group. No need to specify "Top left group"	Allow "students" or "young" instead of "18-24s" Any implication that diagram enables you to see information about location of young people
12	(a)		k(1+2+3+4+5) (=1) $k = \frac{1}{15}$	M1 A1	3.3 1.1	Allow 15k (= 1) May be implied	

www.yesterdaysmathsexam.com

Mark Scheme

P(X = 3) = $3 \times \frac{1}{15}$ or $\frac{3}{15}$ (= 0.2 AG) A1 2.1 Must see $3 \times \frac{1}{15}$ or $\frac{3}{15}$ and answer 0.2 12 (b) 1 2 3 4 5 $\frac{1}{15}$ $\frac{2}{15}$ $\frac{3}{15}$ $\frac{4}{15}$ $\frac{5}{15}$ oe M1 1.2 M1 for ≥ 3 probs correct, ft their k cao. Allow decimals (2 dp) Allow X = 0 or if prob shown a SC: Table with all five probs = 0.2: M1 12 (c) Both parts. Allow mixture of methods [2] M1 SC: Table with all five probs = 0.2: M1 Allow X = 0 or if prob shown a SC: Table with all five probs = 0.2: M1 12 (c) Both parts. Allow mixture of methods Image: Column term of the table with all five probs = 0.2: M1 Speci 12 (c) (i) Sum of the table with all five probs = 0.2: M1 Speci 12 (c) (i) Speci Speci 2.way table Speci Speci Speci	
$\begin{array}{ c c c c c c }\hline 12 & (c) & Both parts. Allow mixture of methods \\\hline 12 & (c) & (i) \\\hline 12 & (c) & (c) \\\hline 12 & (c) & (c$	al cases
12 (c) Both parts. Allow mixture of methods 12 (c) (i) Speci	
12 (c) (i) Speci	
	All probs
	= 0.2
$\frac{3}{15} \times \frac{4}{15} + \frac{2}{15} \times \frac{5}{15}$ oe Count 4 pairs	$0.2^2 + 0.2^2 M1$
$15^{15}^{15}^{15}^{15}^{15}$ M1 3.4 Correct products added, ft their table M1 But if (b)	But if (b)
correct: M0	
	$2 \times (0.2^2 + 0.2^2)$
$\times 2 \qquad \qquad \mathbf{M1} \mathbf{3.1a} 2 \times (\mathbf{Sum of two products of probs}) \qquad \div 25 \qquad \mathbf{M1}$	Allow without 2× M1
$=\frac{44}{225}$ or 0.196 (3 sf) A1 1.1 cao $= 0.16$ A0	
223	- 0.10 110
[3] $[3]$	
12 (c) (ii) P(one value is 2 & $T = 7$) = $2 \times \frac{2}{15} \times \frac{5}{15}$ M1 3.4 Allow without "2×", ft their table Count 2 pairs M1	2×0.2^2 M1
$=\frac{4}{45}$ A1f 1.1 ft their table (except if all probs = 0.2) A0	= 0.08 A0
$P(\text{one value is } 2 \& T = 7)$ $(\frac{4}{45} = 0.0889)$ Allow any probability	0.08
$\frac{P(\text{one value is } 2 \& T = 7)}{P(T = 7)} \qquad \left(\frac{\frac{4}{45}}{\frac{44}{225}} \text{ or } = \frac{0.0889}{0.196}\right) \qquad \mathbf{M1} \qquad 2.1 \qquad \frac{\text{Allow any probability}}{\text{Their (c)(i) or their } P(T = 7)} \qquad \div 4 \qquad \mathbf{M1}$	$\frac{0.08}{0.16}$ M1
$=\frac{5}{11}$ or 0.455 (3 sf) A1 1.1 cao NB not 0.454 $= 0.5$ A0	= 0.5 A0
Eg:	
If (i) $\frac{22}{225}$, $\frac{2}{45} \div \frac{22}{225} = \frac{5}{11}$ M1A0M1A0	
[4]	

www.yesterdaysmathsexam.com Mark Scheme

13	N(5000×0.26, 5000×0.26×0.74) may be implied = N(1300, 962)	M1	3.1 a			g Binomial not Normal, , 0.26) soi	M1
	$\begin{array}{ll} 1300-2\times\sqrt{"962"} & \text{or } 1300-1.96\times\sqrt{"962"} \\ (=1238) & (=1239) \end{array}$	M1	3.3	or $\phi^{-1}(0.025)$ May be implied or -1.96 or $1239(.2)$ seen	Attemp	t $P(X < n)$ for $1230 \le n \le 1250$	M1
	$P(X < 1239) \text{ or } P(X \le 1238)$ or $P(X < 1240) \text{ or } P(X \le 1239)$	M1	3.4	One of these attempted, by Binomial or Normal			
	$P(X \le 1238) = 0.0233 \text{ OR } P(X \le 1239) = 0.0251$	A1	1.1	BC		Allow 0.0232 instead of 0.02	233
	$P(X \le 1238) = 0.0233$ AND $P(X \le 1239) = 0.0251$ AND Largest <i>n</i> is 1239 or $n \le 1239$	A1	2.2a	Correct P($X \le 1238$) &P($X \le 1239$) and conclusion.) seen	If use normal to find these pro (0.0265 & 0.0246) A0A0	obs
	Example of incorrect method: $1300 - 2 \times \sqrt{"962"} (= 1238)$ P(X < 1239) = 0.0251 P(X < 1238) = 0.0233 Largest <i>n</i> is 1239 SC 4	[5]		Example of inadequate method: $1300 - 1.96 \times \sqrt{962}$ (= 1239) or inv Bin(0.025) = 1239 Largest <i>n</i> is 1239 SC 4		NB If two methods used, mark the better one. NB: SC 1239, no working or incorrect or inadequate working, SC: 4 marks out of 5	

www.yesterdaysmathsexam.com Mark Scheme

June 2019

Exemplars for Q10

Hypotheses

А	H ₀ : $\mu = 0.034$ H ₁ : $\mu \neq 0.034$ where $\mu = (pop)$ mean pollutant level	B1B1
В	H ₀ : $\mu = 0.034$ H ₁ : $\mu \neq 0.034$	B1B0
C	 H₀: The (pop) mean pollutant level is 0.034 H₁: The (pop) mean pollutant level is not 0.034 See Specimen paper q10 MS "Must be in terms of parameter values" 	B1B0
D	$\begin{array}{l} H_0 = 0.034 \\ H_0 \neq 0.034 \end{array}$	B0B0
E	H ₀ : $\mu = 0.034$ H ₁ : $\mu = 0.0325$ where $\mu = (pop)$ mean pollutant level	B1B0
<u>Prot</u>	pability and conclusion	
F	No statement of distribution $P(\overline{X} = 0.0325) = 0.0486$ 0.0486 > 0.025 Don't reject H ₀ Likely that mean level of pollutant hasn't changed	M1A1 A1 M1 A1
F	$P(\overline{X} = 0.0325) = 0.0486$ 0.0486 > 0.025 Don't reject H ₀	A1 M1

I J	P($\overline{X} > 0.0325$) = 0.951 0.951 > 0.025 Sufficient evidence that mean poll't level has changed $\overline{X} \sim N(0.034, 0.00000818)$		M1A1 A0 M0A0			
Ū	$P(\overline{X} < 0.0325) = 0.013$ 0.013 < 0.025 Sufficient evidence that level has changed		M1A0 A0 M1A1			
K	$\mu \pm 1.96\sigma = 0.0322$ to 0.0358 0.0325 lies within this range Reject H ₁ Insufficient evidence that level of poll't has decreased	BOD	M1A1 A1 M1 A0			
L	CV = 0.0322 0.0325 > 0.0322 Reject H ₀ . Evidence that level of poll't has changed.		M1A1 A1 M0A0			
М	$(0.0322 - 0.034) \div \sqrt{0.0000409/50} = -1.66$ 1.66 < 1.96 Don't reject H ₀ . Level of poll't hasn't changed.		M1A1 A1 M1A0			
<u>1-tail</u>						
N	H ₀ : $\mu = 0.034$ H ₁ : $\mu < 0.034$ where $\mu = (pop)$ mean pollutant level		B1B0			
0	H ₀ : $\mu = 0.034$ H ₁ : $\mu < 0.034$		B0B0			
Р	H _o : The (non) mean pollutant level is 0.034					

 $\begin{array}{ll} P & H_0: \mbox{ The (pop) mean pollutant level is } 0.034 \\ H_1: \mbox{ The (pop) mean pollutant level is less than } 0.034 \\ \end{array} \\ \end{array} \\ \begin{array}{ll} B0B0 \end{array}$

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2019