edexcel 쁯

Mark Scheme (Results)

Summer 2013

GCE Statistics S2 (6684/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www. pearson.com/uk

Summer 2013
Publications Code UA036999
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

www. yesterdaysmathsexam.com

2(a)	$\mathrm{P}(X=1)=0.25 \mathrm{e}^{-0.25}=0.1947$ awrt 0.195	M1A1
		(2)
2(b)	$\begin{aligned} & X \sim \operatorname{Po}(1.5) \\ & \mathrm{P}(X>2)=1-\mathrm{P}(X \leq 2) \\ & =1-0.8088 \\ & =0.1912 \end{aligned}$ awrt 0.191	B1 M1 A1
		(3)
2(c)	$\begin{aligned} & {[\lambda=300 \times 0.25=75]} \\ & \begin{array}{l} X \sim \mathrm{~N}(75,75) \\ \mathrm{P}(X<90) \end{array} \quad=\mathrm{P}\left(X \leq \frac{89.5-75}{\sqrt{75}}\right) \\ & \quad=\mathrm{P}(Z \leq 1.6743 . .) \\ & \quad=\text { awrt } 0.953 \text { or } 0.952 \end{aligned}$	B1 B1 M1M1 A1 (5) Total 10 marks
	Notes	
$\begin{aligned} & \text { 2(a) } \\ & \text { 2(b) } \\ & \text { 2(c) } \end{aligned}$	M1 $0.25 \mathrm{e}^{-0.25}$ o.e B1 stating or using $\mathrm{Po}(1.5)$ M1 stating or using $1-\mathrm{P}(X \leq 2)$ $1^{\text {st }} \mathrm{B} 1$ for normal approximation and correct mean $2^{\text {nd }} \mathrm{B} 1 \operatorname{Var}(X)=75$ or $\mathrm{sd}=\sqrt{75}$ or awrt 8.66 (may be given if corr formula) $1^{\text {st }}$ M1 using either 89.5 or 88.5 $2^{\text {nd }}$ M1 Standardising using their mean and their sd, using [89.5, 88 finding correct area NB use of Poisson gives an answer of 0.9498 and gains no ma	in standardisation 5 or 89] and for S

Question Number	Scheme	Marks
3(a)	$\begin{aligned} & X \sim \operatorname{Po}(7) \\ & \begin{aligned} \mathrm{P}(X>10) & =1-\mathrm{P}(X \leq 10) \\ & =1-0.9015 \\ & =0.0985 \end{aligned} \end{aligned}$ awrt 0.0985	B1 M1 A1 (3)
3(b)	$\mathrm{P}(X>d)<0.05$ Or $\quad \mathrm{P}(X \geq d)<0.05$ $\mathrm{P}(X \leq d)>0.95$ $\mathrm{P}(X<d)>0.95$ $\mathrm{P}(X \leq 11)=0.9467$ $\mathrm{P}(X<12)=0.9467$ $\mathrm{P}(X \leq 12)=0.9730$ $\mathrm{P}(X<13)=0.9730$ Least number of games =12 Least number of games 13	M1 A1 A1
3(c)	$\begin{array}{lr\|r} \mathrm{H}_{0}: \lambda=1,(\mu=28) \mathrm{H}_{1}: \lambda>1(\mu>28) & \tag{3}\\ \begin{array}{rlr} Y \sim \mathrm{Po}(28) & \text { approximated by } \mathrm{N}(28,28) & \\ \mathrm{P}(Y \geq 36) & =\mathrm{P}\left(Z \geq \frac{35.5-28}{\sqrt{28}}\right) & \\ & =\mathrm{P}(Z \geq 1.42) & \\ & =0.0778 \text { or } 1.42<1.6449 & \mathrm{CR} X \geq 37.2 \end{array} \end{array}$ $0.0778>0.05$ so do not reject $\mathrm{H}_{0} /$ not significant. Not in CR There is no evidence that the average rate of sales per day has increased.	B1 B1 M1M1 A1 M1 A1cso (7) Total 13 marks
	Notes	
3(a) 3(b) 3(c)	B1 stating or using $\operatorname{Po}(7)$ M1 stating or using $1-\mathrm{P}(X \leq 10)$ M1 using or writing $\mathrm{P}(X>d)<0.05$ or $\mathrm{P}(X<d)>0.95$ (condone \geq instead of $>$ and \leq instead of $<$) May be implied by correct answer. Different letters may be used. $1^{\text {st }} \mathrm{A} 1 \mathrm{P}(X \leq 12) / \mathrm{P}(X<13)=$ awrt 0.973 or $\mathrm{P}(X \leq 11) / \mathrm{P}(X<12)=$ awrt 0.947 May be implied by a correct answer $2^{\text {nd }}$ A1 12 or 13 NB An answer of $12 / 13$ on its own with no working gains M1A1A1 $1^{\text {st }}$ B1 both hypotheses correct using λ or μ, and 1 or 28 2nd B1 for writing or using a normal approximation with correct mean and Var (may be given if sd correct in standardisation formula) $1^{\text {st }}$ M1 for use of a continuity correction 35.5 or 36.5 or $x \pm 0.5$ $2^{\text {nd }}$ M1 Standardising using their mean and their sd. If they have not written down a mean and sd then these need to be correct here to award the mark. They must use [35.5, 36.5, 36, x or $x \pm 0.5$] For CR must have $=$ awrt 1.64 or 1.65 $1^{\text {st }} \mathrm{A} 1$ awrt 0.0778 or 0.9222 or the statement $1.42<$ awrt $1.65 / 1.64$ or CR $X \geq 37.2 / X>37.2$ $3^{\text {rd }}$ M1 a correct conclusion for their probability. May be implied by a correct contextual conclusion. NB Non contextual contradicting statements gets M0 $2^{\text {nd }} \mathrm{A} 1$ a correct contextual conclusion for their hypotheses and a fully correct solution with no errors seen. Need the words "rate/average number", "sales" and "increased"oe NB If found $\mathrm{P}(X=36)$ they can get B1B10M0A0M0A0	
Question Number	Scheme	Marks

www. yesterdaysmathsexam.com

4(a)	$\mathrm{E}(X)=\frac{5 b}{2}$	B1 (1)
4(b)	$\begin{aligned} \operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} \\ & =\int_{b}^{4 b} \frac{x^{2}}{3 b} \mathrm{~d} x-\left(\frac{5 b}{2}\right)^{2} \\ & =\left[\frac{x^{3}}{9 b}\right]_{b}^{4 b}-\frac{25 b^{2}}{4} \\ & =\frac{63 b^{3}}{9 b}-\frac{25 b^{2}}{4} \\ & =\frac{3 b^{2}}{4} \end{aligned}$	M1 M1d A1cso (3)
4(c)	$\begin{aligned} \operatorname{Var}(3-2 X) & =4 \operatorname{Var}(X) \\ & =3 b^{2} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$
4(d)	$\mathrm{F}(x)=\left\{\begin{array}{cc} 0 & x<1 \\ \frac{x-1}{3} & 1 \leq x \leq 4 \\ 1 & x>4 \end{array}\right.$	B1B1 (2)
4(e)	$\frac{x-1}{3}=0.5$ so $x=2.5$	B1 (1)
Alt 4(b)	$\begin{aligned} \operatorname{Var}(X) & =\int_{a}^{b} \frac{(x-\bar{x})^{2}}{b-a} \mathrm{~d} x \\ & =\int_{b}^{4 b} \frac{4 x^{2}-20 b x+25 b^{2}}{12 b} \mathrm{~d} x \\ & =\left[\frac{\frac{4 x^{3}}{3}-10 b x^{2}+25 b^{2} x}{12 b}\right]_{b}^{4 b} \\ & =\frac{9 b^{3}}{12 b} \\ & =\frac{3 b^{2}}{4} \end{aligned}$	Total 9 marks M1 M1 A1cso(3)
	Notes	
4(b) 4(c) 4(d)	NB remember the answer is given (AG) so they must show their working $1^{\text {st }}$ M1 for using $\int \frac{x^{2}}{3 b} \mathrm{~d} x$ - (their (a) $)^{2}$ limits not needed and condone missing $\mathrm{d} x$. NB need not use the letter x but if they use b instead do not award if they cancel down to $\frac{b}{3}$ NB Check they have subtracted (their(a)) ${ }^{2}$ $2^{\text {nd }}$ M1 dependent on previous M being awarded. For some correct integration $x^{n} \rightarrow x^{n+1}$ and correct limits substituted at some point. condone $4 b^{3}$ instead of (4b) ${ }^{3}$ A1 for correct solution with no incorrect working seen. M1 for writing or using $4 \operatorname{Var}(X)$ $1^{\text {st }}$ B1 top and bottom line. Allow use of \leq instead of $<$ and \geq instead of $>$ $2^{\text {nd }}$ B1 middle row. Allow use of $<$ instead of \leq	
Question Number	Scheme	Marks
5(a)	$\mathrm{F}(1)=0, \frac{4}{10}+a+b=0$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$

$$
a=-\frac{3}{5} \text { or } b=\frac{1}{5}
$$

\begin{tabular}{|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& a=-\frac{3}{5} \text { or } b=\frac{1}{5} \\
\& \mathrm{~F}(2)=1,2+2 a+b=1
\end{aligned}
\] \\
Solving gives \(a=-\frac{3}{5}, b=\frac{1}{5}\) \\
Alt
\[
\begin{equation*}
\mathrm{F}(2)-\mathrm{F}(1)=1,2+2 a+b-\frac{4}{10}-a-b=1 \tag{4}
\end{equation*}
\]
\[
a=-\frac{3}{5}
\]
\[
\begin{align*}
\& \mathrm{F}(2)=1 \text { or } \mathrm{F}(1)=0 \\
\& 2-\frac{6}{5}+b=1 \text { or } \frac{4}{10}-\frac{3}{5}+b=0 \\
\& b=\frac{1}{5} \tag{4}
\end{align*}
\]
\end{tabular} \\
\hline 5(b) \& Differentiating cdf gives \begin{tabular}{rl|l|}
\(\mathrm{f}(x)\) \& \(=\frac{3}{10} x^{2}+\frac{6}{10} x+a, \quad 1 \leq x \leq 2\) \& \\
\& \(=\frac{3}{10}\left(x^{2}+2 x-2\right)\) \& B1 cso \\
\end{tabular} \\
\hline 5(c) \& \[
\begin{aligned}
\mathrm{E}(X) \& =\int_{1}^{2} \frac{3}{10}\left(x^{3}+2 x^{2}-2 x\right) \mathrm{d} x \\
\& =\frac{3}{10}\left[\frac{1}{4} x^{4}+\frac{2}{3} x^{3}-x^{2}\right]_{1}^{2} \\
\& =\frac{13}{8}
\end{aligned}
\] \\
\hline 5(d) \& \begin{tabular}{|l|l|}
\(\mathrm{F}(1.425)=0.24355, \mathrm{~F}(1.435)=0.25227\) \& M1A1 \\
0.25 lies between \(\mathrm{F}(1.425)\) and \(\mathrm{F}(1.435)\) hence result. \& A1 (3) \\
\hline
\end{tabular} \\
\hline \& Notes \(\quad\) Total 12 marks \\
\hline 5(a)

5(b)

5(c) \& | $1^{\text {st }} \mathrm{M} 1 \quad$ using $\mathrm{F}(1)=0$. Clear attempt to form a linear equation for a and b |
| :--- |
| $1^{\text {st }} \mathrm{A} 1$ either $a=-0.6$ or $b=0.2$ Previous M must be awarded |
| $2^{\text {nd }} \mathrm{M} 1$ using $\mathrm{F}(2)=1$. Clear attempt to form a second linear equation for a and b |
| $2^{\text {nd }}$ A1 if $1^{\text {st }}$ A1 awarded then both a and b must be correct otherwise award if either $a=-0.6$ or $b=0.2$ |
| alt $\quad 1^{\text {st }} \mathrm{M} 1 \quad \mathrm{~F}(2)-\mathrm{F}(1)=1$. Leading to a value for $a: 1^{\text {st }} \mathrm{A} 1 \quad a=-0.6$ |
| $2^{\text {nd }} \mathrm{M} 1$ using $\mathrm{F}(2)=1$ or $\mathrm{F}(1)=0$. Leading to a value for $b: 2^{\text {nd }} \mathrm{A} 1 \quad b=0.2$ |
| NB correct values for a and b with no working scores no marks. |
| B1 They must differentiate and then factorise. cso |
| $1^{\text {st }}$ M1 for clear attempt to use $x f(x)$ with an intention of integrating (Integral sign enough) Ignore limits. Must substitute in $\mathrm{f}(x)$ or "their $\mathrm{f}(x)$ ". |
| $2^{\text {nd }}$ M1d dependent on previous M being awarded for some correct integration... at least one correct term with the correct coefficient. |
| $1^{\text {st }} \mathrm{A} 1$ for fully correct (possibly unsimplified) integration. Ignore limits |
| $2^{\text {nd }}$ A1 Accept 1.63 and 1.625 or some other exact equivalent |
| M1 expression showing substitution of 1.425 or 1.435 into $\mathrm{F}(x)$ [or into $\mathrm{F}(x)-0.25$] |
| [or putting their $\mathrm{F}(x)=0.25$ and attempting to solve leading to $x=\ldots$..] May be implied by either pair of the correct answers as given below for the $1^{\text {st }} \mathrm{A} 1$ |
| $1^{\text {st }} \mathrm{A} 1$ awrt 0.244 and awrt 0.252 [or awrt -0.00645 and awrt 0.00227] [or $x=$ awrt 1.432] |
| $2^{\text {nd }} \mathrm{A} 10.25$ lies between $\mathrm{F}(1.425)$ and $\mathrm{F}(1.435)$ [or change in sign therefore root |
| between] [or "1.432" lies between 1.425 and 1.435 therefore root |
| between]. Statement must be true for their method |

\hline
\end{tabular}

Question

 Number6(a) $\quad X \sim \mathrm{~B}(20,0.25) \quad \mathrm{M}$

$\mathrm{P}(X \geq 10)=1-0.9861=0.0139$	A 1
$\mathrm{P}(X \leq 1)=0.0243$	A 1

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036999 Summer 2013

Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

