Mark Scheme (Results) Summer 2010

GCE

Core Mathematics C1 (6663)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA023696
All the material in this publication is copyright
© Edexcel Ltd 2010

SOME GENERAL PRINCIPLES FOR C1 MARKING

(But the particular mark scheme always takes precedence)

Method marks

Usually we would overlook simple arithmetic errors or sign slips but the correct processes should be used. So dividing by a number instead of subtracting would be MO but adding a number instead of subtracting would be treated as the correct process but a sign error.

Method mark for solving 3 term quadratic:

1. Factorisation
$\left(x^{2}+b x+c\right)=(x+p)(x+q)$, where $|p q|=|c|, \quad$ leading to $x=\ldots$
$\left(a x^{2}+b x+c\right)=(m x+p)(n x+q)$, where $|p q|=|c|$ and $|m n|=|a|, \quad$ leading to $\mathrm{x}=\ldots$
2. Formula

Attempt to use correct formula (with values for a, b and c).
3. Completing the square

$$
\text { Solving } x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0, \quad \text { leading to } x=\ldots
$$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values (but refer to the mark scheme first... the application of this principle may vary). Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but will be lost if there is any mistake in the working.

Equation of a straight line

Apply the following conditions to the M mark for the equation of a line through (a, b) :
If the a and b are the wrong way round the M mark can still be given if a correct formula is seen,
(e.g. $\left.y-y_{1}=m\left(x-x_{1}\right)\right)$ otherwise MO.

If (a, b) is substituted into $y=m x+c$ to find c , the M mark is for attempting this and scored when $\mathrm{c}=\ldots$ is reached.

Answers without working

The rubric says that these may gain no credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Misreads

A misread must be consistent for the whole question to be interpreted as such.
These are not common. In clear cases, please deduct the first 2 A (or B) marks which would have been lost by following the scheme. (Note that 2 marks is the maximum misread penalty, but that misreads which alter the nature or difficulty of the question cannot be treated so generously and it will usually be necessary here to follow the scheme as written).
Sometimes following the scheme as written is more generous to the candidate than applying the misread rule, so in this case use the scheme as written.
If in doubt, send the response to Review.

J une 2010
 Core Mathematics C1 6663
 Mark Scheme

Question Number	Scheme	Marks
1.	$\begin{aligned} (\sqrt{75}-\sqrt{27}) & =5 \sqrt{3}-3 \sqrt{3} \\ & =2 \sqrt{3} \end{aligned}$	M1 A1
Notes		
	M1 for $5 \sqrt{3}$ from $\sqrt{75}$ or $3 \sqrt{ } 3$ from $\sqrt{27}$ seen anywhere A1 for $2 \sqrt{3}$; allow $\sqrt{12}$ or $\begin{aligned} \text { or } \\ k=2, x=3\end{aligned}$ allow $k=1, x=12$ Some Common errors $\sqrt{75}-\sqrt{27}=\sqrt{48}$ leading to $4 \sqrt{3}$ is M0A0 $25 \sqrt{3}-9 \sqrt{3}=16 \sqrt{3}$ is M0A0	

Question Number	Scheme	
7.	$\begin{aligned} & \frac{3 x^{2}+2}{x}=3 x+2 x^{-1} \\ & \left(y^{\prime}=\right) 24 x^{2},-2 x^{-\frac{1}{2}},+3-2 x^{-2} \\ & {\left[24 x^{2}-2 x^{-\frac{1}{2}}+3-2 x^{-2}\right]} \end{aligned}$	M1 A1 M1 A1 A1A1
	 They do not need one line with all terms correct for Award marks when first seen in this question and a Condone a mixed line of some differentiation and e.g. $24 x^{2}-4 x^{\frac{1}{2}}+3 x+2 x^{-1}$ can score $1^{\text {st }}$ M1A1	x^{1} for $3 x$ or $\frac{2}{x}$ for $2 x^{-1}$ differentiation at the end. east one term of their expression 0 this, not e.g. $\frac{-4}{2} x^{-\frac{1}{2}}$ Condone $3+(-2) x^{-2}$ ull marks. ply ISW. me division $2^{\text {nd }}$ M1A1
Quotient /Product Rule	$\frac{x(6 x)-\left(3 x^{2}+2\right) \times 1}{x^{2}}$ or $6 x\left(x^{-1}\right)+\left(3 x^{2}+2\right)\left(-x^{-2}\right)$ $\frac{3 x^{2}-2}{x^{2}}$ or $3-\frac{2}{x^{2}}$ (o.e.)	$1^{\text {st }}$ M1 for an attempt: $\frac{P-Q}{x^{2}}$ or $R+(-S)$ with one of P, Q or R, S correct. $1^{\text {st }} \mathrm{A} 1$ for a correct expression $4^{\text {th }} \mathrm{A} 1$ same rules as above

Question Number	Scheme ${ }^{\text {a }}$ Marks
11. (a) (b)	$(y=) \frac{3 x^{2}}{2}-\frac{5 x^{\frac{1}{2}}}{\frac{1}{2}}-2 x \quad(+c)$ M1A1A1 $\mathrm{f}(4)=5 \Rightarrow 5=\frac{3}{2} \times 16-10 \times 2-8+c$ $\left[\mathrm{f}(x)=\frac{3}{2} x^{2}-10 x^{\frac{1}{2}}-2 x+9\right]$ $m=3 \times 4-\frac{5}{2}-2\left(=7.5\right.$ or $\left.\frac{15}{2}\right)$ M1 Equation is: $y-5=\frac{15}{2}(x-4)$ A1 (5) $\qquad 2 y-15 x+50=0$ o.e.
(a) (b) Normal	$1^{\text {st }}$ M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$ $1^{\text {st }} \mathrm{A} 1$ for at least 2 correct terms in x (unsimplified) $2^{\text {nd }}$ A1 for all 3 terms in x correct (condone missing $+c$ at this point). Needn't be simplified $2^{\text {nd }}$ M1 for using the point $(4,5)$ to form a linear equation for c. Must use $x=4$ and $y=5$ and have no x term and the function must have "changed". $3^{\text {rd }} \mathrm{A} 1$ for $c=9$. The final expression is not required. $1^{\text {st }}$ M1 for an attempt to evaluate $\mathrm{f}^{\prime}(4)$. Some correct use of $x=4$ in $\mathrm{f}^{\prime}(x)$ but condone slips. They must therefore have at least 3×4 or $-\frac{5}{2}$ and clearly be using $\mathrm{f}^{\prime}(x)$ with $x=4$. Award this mark wherever it is seen. $2^{\text {nd }}$ M1 for using their value of m [or their $-\frac{1}{m}$] (provided it clearly comes from using $x=4$ in $\mathrm{f}^{\prime}(x)$) to form an equation of the line through $(4,5)$). Allow this mark for an attempt at a normal or tangent. Their m must be numerical. Use of $y=m x+c$ scores this mark when c is found. $1^{\text {st }} \mathrm{A} 1$ for any correct expression for the equation of the line $2^{\text {nd }} \mathrm{A} 1$ for any correct equation with integer coefficients. An " $=$ " is required. e.g. $2 y=15 x-50$ etc as long as the equation is correct and has integer coefficients. Attempt at normal can score both M marks in (b) but A0A0

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA023696 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

