Qu	Scheme	Marks	AO
1 (a)	$[p=1-(0.2+0.2+0.1+0.2)]=\underline{\mathbf{0 . 3}}$	B1	1.1b
		(1)	
(b)	A and C are mutually exclusive. [NOT $\mathrm{P}(A)$ and $\mathrm{P}(C)$]	B1	1.2
		(1)	
		(2 marks)	
	Notes		
(a)	B1 for		
(b)	B1 for A and C [NB $A \cap C$ or $A \cap C=\varnothing$ is B0] If more than one case given they must all be correct e.g. $A \cap B$ and C		

Qu	Scheme	Marks	AO
2 (a)	[Let $p=\mathrm{P}(F \mid C)$]		
	Tree diagram or some other method to find an equation for p	M1	2.1
	$0.1 \times 0.09+0.3 \times 0.03+0.6 \times p=0.06$	A1	1.1 b
	$p=0.07$ i.e. 7%	A1	1.1 b
		(3)	
(b)	e.g. $\mathrm{P}(B$ and $F)=0.3 \times 0.03=0.009$ but $\mathrm{P}(B) \times \mathrm{P}(F)=0.3 \times 0.06=0.018$	B1	2.4
	These are not equal so not independent		
		(1)	
		(4 marks)	
	Notes		

(a) M1 for selecting a suitable method to find the missing probability e.g. sight of tree diagram with $0.1,0.3,0.6$ and $0.09,0.03, p$ suitably placed
e.g. sight of VD with 0.009 for $A \cap F$ and $B \cap F$ and $0.6 p$ suitably placed
or attempt an equation with at least one correct numerical and one " p " product (not necessarily correct) on LHS or for sight of $0.06-(0.009+0.009)$ (o.e. e.g. $6-1.8=4.2 \%$)
$1^{\text {st }} \mathrm{A} 1$ for a correct equation for p (May be implied by a correct answer)
or for the expression $\frac{0.06-(0.009+0.009)}{0.6}$ (o.e.)
$2^{\text {nd }}$ A1 for 7% (accept 0.07)
Correct Ans: Provided there is no incorrect working seen award $3 / 3$
e.g. may just see tree diagram with 0.07 for p (probably from trial and improv')
(b) B1 for a suitable explanation...may talk about $2^{\text {nd }}$ branches on tree diagram and point out that $0.03 \neq 0.06$ but need some supporting calculation/words

Can condone incorrect use of set notation (it is not on AS spec) provided the rest of the calculations and words are correct.

Question	Scheme	Marks	AOs
2	$x=0$	B1	2.2a
	$\mathrm{P}(A)=0.1+z+y \quad \mathrm{P}(C)=0.39+z[+x] \quad \mathrm{P}(A$ and $C)=z$	M1	2.1
	$\mathrm{P}(A$ and $C)=\mathrm{P}(A) \times \mathrm{P}(C) \rightarrow z=(0.1+z+y) \times(0.39+z[+x])$	M1	1.1b
	$\begin{aligned} & {\left[\sum p=1\right]} \\ & 0.06+0.3+0.39+0.1+z+y[+x]=1 \rightarrow \quad[z+y[+x]=0.15] \end{aligned}$	M1	1.1b
	Solving (simultaneously) leading to $\quad z=0.13 \quad y=0.02$	A1	1.1b
(5 marks)			
Notes			
	B1: for $x=0$, may be seen on Venn diagram		
	M1: Identifying the probabilities required for independence and at least 2 correct These must be labelled If there are no labels, then this may be implied by $z=(0.1+z+y)(0.39+z[+x])$, allow one numerical slip Allow e.g. $\mathrm{P}\left(A^{\prime}\right)=0.39+0.30+0.06[+x] \quad \mathrm{P}(C)=0.39+z[+x] \quad \mathrm{P}\left(A^{\prime} \text { and } C\right)=0.39$ [Not on spec. but you may see use of conditional probabilities]		
	M1: Use of independence equation with their labelled probabilities in terms $y, z[$ and $x]$ All their probabilities must be substituted into a correct formula Sight of a correct equation e.g. $z=(0.1+z+y)(0.39+z[+x])$ scores M1M1		
	```M1: Using \(\Sigma p=1\) Implied by \([x+] y+z=0.15\) or their \(x+y+z=0.15\) where \(x, y\), and \(z\) are all probabilities or e.g. \(\mathrm{P}(A)=0.25\)```		
	A1: both $y=0.02$ and $z=0.13$		



Question	Scheme	Marks	AOs
3(a)	$p=[1-0.75-0.05=] \underline{\mathbf{0 . 2 0}}$	B1	1.1b
		(1)	
(b)	$q=\underline{0.15}$	B1ft	1.1b
	$\mathrm{P}(A)=0.35 \quad \mathrm{P}(T)=0.6 \quad \mathrm{P}(A \text { and } T)=0.20$ $\mathrm{P}(A) \times \mathrm{P}(T)=0.21$	M1	2.1
	Since $0.20 \neq 0.21$ therefore $A$ and $T$ are not independent	A1	2.4
		(3)	
(c)	$\mathrm{P}(\operatorname{not}[A$ or $C])=\underline{\mathbf{0 . 4 5}}$	B1	1.1b
		(1)	
(5 marks)			
Notes:			
(a)   B1: cao for $p=0.20$			
(b)   B1: Ft for use of their $p$ and $\mathrm{P}(A$ or $T)$ to find $q$ i.e. $0.75-" p$ " -0.40 or $q=0.15$   M1: For the statement of all probabilities required for a suitable test and sight of any appropriate calculations required			
(c)   A1: All probabilities correct, correct comparison and suitable comment cao for 0.45			




Question Number	Scheme	Marks
4.(a)		B1 B1
(b)	$\begin{aligned} 1-0.3 \times 0.5 \times 0.7 & \times 0.9 \text { or } 0.7+(0.3 \times 0.5)+(0.3 \times 0.5 \times 0.3)+(0.3 \times 0.5 \times 0.7 \times 0.1) \\ & =\underline{\mathbf{0 . 9 0 5 5}} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$
(c)	$\begin{array}{r} {\left[\mathrm{P}\left(P_{1} \cup P_{2} \mid \text { Pass }\right)=\right] \frac{0.7+" 0.3 " \times 0.5}{(b)},=\frac{0.85}{" 0.9055 "}}  \tag{2}\\ \quad=0.938707 \ldots=\text { awrt } \underline{\mathbf{0 . 9 3 9}} \end{array}$	$\mathrm{M} 1, \mathrm{~A} 1 \mathrm{ft}$ A1
(d)	$\begin{array}{\|l} p+(1-p)(p-0.2) \quad \text { or } \quad 1-(1-p)(1.2-p)(\text { o.e. }) \\ \text { e.g. } \quad p+p-p^{2}+0.2 p-0.2=0.95 \rightarrow p^{2}-2.2 p+1.15=0 \tag{*} \end{array}$	(3)   M1   dM1A1cso   (3)
(e)	$\begin{gathered} p=\frac{2.2 \pm \sqrt{2.2^{2}-4 \times 1.15}}{2} \text { or Complete the sq: }(p-1.1)^{2}-1.1^{2}+1.15=0 \\ =\frac{2.2 \pm 0.4898 \ldots}{2} \text { or } \frac{2.2 \pm \sqrt{0.24}}{2} \text { or } 1.1 \pm \sqrt{0.06} \text { or }(1.34 \ldots), 0.855 \ldots \\ p=0.85505102 \ldots p=\underline{\mathbf{0 . 8 5 5}} \end{gathered}$	M1   A1   A1
		(3)
	Notes	
(a)	$1^{\text {st }} \mathrm{B} 1 \quad$ for correctly placing 0.3 and 0.5	
(b)	Apart from (d), a correct answer with no incorrect working scores full marks.   M1 for a correct expression (ft from their tree diagram)   A1 for 0.9055 or exact equivalent e.g. $\frac{1811}{2000}$ Accept 0.906 only if correct expr' seen	
(c)	M1 for a correct ratio of probs ft their 0.3 and their answer to (b)[if $<1]$. Num $>$ Den M0   A1ft for correct numerator and their part (b) on denominator   A1 for awrt 0.939 or accept exact fraction eg $\frac{1700}{1811}$	
(d)	$1^{\text {st }} \mathrm{M} 1$ for a correct expression for P (pass) in terms of $p$ [ condone $p-(p-1)$ $2^{\text {nd }} \mathrm{dM} 1$ dep. on $1^{\text {st }} \mathrm{M} 1$ for expanding brackets and forming an equation in $p$ Allow one slip   A1cso correct processing leading to printed answer. No incorrect working	$(p-0.2) \mathrm{etc}]$ seen.
(e)	M1 for attempt to solve given equation, correct expression. Condone just + not $\pm$ $1^{\text {st }}$ A1 for correct expression and simplified square root or $1.34 \ldots$ and $0.855 \ldots$ $2^{\text {nd }} \mathrm{A} 1$ for $p=0.855$ only (penalise any extra value $>1$ ) Correct ans only scores $3 / 3$ For $\frac{1}{10}(11-\sqrt{6})$ or $0.855 \ldots$ score M1A1A0 (not to 3 dp ) but for 0.855 can score M1A1A1	
Ans. only		



