Qu	Scheme	Marks	AO
1 (a)	[p = 1 - (0.2 + 0.2 + 0.1 + 0.2)] = 0.3	B1	1.1b
(b)	A and C are mutually exclusive. [NOT $P(A)$ and $P(C)$]	(1) B1 (1)	1.2
		(2 marks)	
	Notes	()	
(a)	B1 for		
(b)	B1 for <i>A</i> and <i>C</i> [NB $A \cap C$ or $A \cap C = \emptyset$ is B0] If more than one case given they must <u>all</u> be correct e.g. $A \cap B$ and <i>C</i>		

Qu	Scheme	Marks	AO
2 (a)	$[\text{Let } p = P(F \mid C)]$		
	Tree diagram or some other method to find an equation for p	M1	2.1
	$0.1 \times 0.09 + 0.3 \times 0.03 + 0.6 \times p = 0.06$	A1	1.1b
	<i>p</i> = 0.07 i.e. <u>7%</u>	A1	1.1b
		(3)	
(b)	e.g. $P(B \text{ and } F) = 0.3 \times 0.03 = 0.009$ but		
	$P(B) \times P(F) = 0.3 \times 0.06 = 0.018$	B1	2.4
	These are not equal so not independent		
		(1)	
		(4 mark	(s)
	Notes		
(a)	M1 for selecting a suitable method to find the missing probab	ility	
	e.g. sight of tree diagram with 0.1, 0.3, 0.6 and 0.09, 0.03, p suitably		
	placed		
	e.g. sight of VD with 0.009 for $A \cap F$ and $B \cap F$ and 0.6p suitably		
	placed		
	one "n" product (not necessarily correct) on I HS		
	or for sight of $0.06 - (0.009 + 0.009)$ (o.e. e.g. $6 - 1.8 = 4.2\%$)		
	1^{st}A1 for a correct equation for <i>p</i> (May be implied by a correct answer)		er)
	0.06 - (0.009 + 0.009)		,
	$\underline{\text{or}}$ for the expression $\underbrace{0.6}_{0.6}$ (o.e.)		
	2^{nd} A1 for 7% (accept 0.07)		
	Correct Ans: Provided there is no incorrect working seen award	1 3/3	
	e.g. may just see tree diagram with 0.07 for p (probably from tria	al and imp	prov')
(b)	B1 for a suitable explanationmay talk about 2 nd branches o	n tree dia	gram
	and point out that $0.03 \neq 0.06$ but need some supporting		-
	calculation/words		
	Can condone incorrect use of set notation (it is not on AS	spec) pro	ovided
	the rest of the calculations and words are correct.		

Qu	Scheme	Marks	AO
5 (a)	P(X=4) = P(X=2) so $P(X=4) = 0.35$	M1	2.1
	P(X=1) = P(X=3) and $P(X=1) + P(X=3) = 1 - 0.7$		
		A1	1.1b
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	1(X X) = 0.15 = 0.55 = 0.15 = [0.55]	(2)	
(b)	Let A = number of spins that land on 4 $A \sim B(60, "0.35")$	B1ft	3.3
	$[P(A > 30) =] 1 - P(A \leq 30)$	M1	3.4
	= 1 - 0.99411 = awrt 0.00589	A1	1.1b
		(3)	
(c)	$Y - X \leq 4 \implies \frac{12}{X} - X \leq 4 \text{ or } 12 - X^2 \leq 4X \text{ (since } X > 0) \text{ o.e.}$	M1	3.1a
	i.e. $0 \leq X^2 + 4X - 12 \implies 0 \leq (X+6)(X-2)$ so $X \geq 2$	M1	1.1b
	$P(Y - X \le 4) = P(X \ge 2) = 0.35 + 0.15 + 0.35 = 0.85$	A1	3.2a
		(3)	
		(8 marks	5)
(a)	M1 for using the given information to obtain $P(X = 4)$ Award for statement $P(Y = 4) = P(Y = 2)$ or writing $P(Y = 4)$	(4) - 0.35	
	A for getting fully correct distribution (any form that clearly i	dentifies p	robs)
	e.g. can be list $P(X=1) = 0.15$, $P(X=3) =etc$	$\int 0.15 r =$	=13
	or as a probability function $P(X = x) = -$	$\begin{bmatrix} 0.15 & x \end{bmatrix}$	- 7 1
	[Condone missing $P(X=2)$ as this is given in QP]	(0.55 x -	- 2, 7
(b)	B1 for selecting a suitable model, sight of B(60, their 0.35) of	o.e. in wor	ds
	f.t. their $P(X=4)$ from part (a).		
	Can be implied by $P(A \leq 30) = a \text{wrt } 0.9941$ or final answer	r = awrt 0.0	00589
	M1 for using their model and interpreting "more than half"		
	Need to see $1 - P(A \le 30)$. Can be implied by awrt 0.00	1589	
	Can ignore incorrect LHS such as $P(A \ge 30)$		
	A1 10r awrt 0.00389		
(c)	1 st M1 for translating the prob. problem into a <u>correct</u> mathema	tical inequ	ality
	Just an inequality in 1 variable. May be inside a probabil	ity stateme	ent.
ALT	Table of values:X1234or values of		
	Y 12 6 4 3 Y - X = 11,	4, 1, -1	
	2^{nd} M1 for solving the inequality leading to a range of values, a	llow 1 or 2	2 slips
	May be a quadratic or cubic but must lead to a set of value	s of X or Y	'-X
ALT	Provide a set of the 	ed f thair dist	(h'n)
	A1 for interpreting the inequality and solving the problem i.e.	0.85 cao	u II)

Question	Scheme	Marks	AOs
2	x = 0	B1	2.2a
	P(A) = 0.1 + z + y $P(C) = 0.39 + z[+x]$ $P(A and C) = z$	M1	2.1
	P(A and C) = P(A)×P(C) → z = (0.1+z+y)×(0.39+z[+x])	M1	1.1b
	$\begin{bmatrix} \sum p = 1 \end{bmatrix}$ 0.06 + 0.3 + 0.39 + 0.1 + z + y[+x] = 1 \rightarrow [z + y[+x] = 0.15]	M1	1.1b
	Solving (simultaneously) leading to $z = 0.13$ $y = 0.02$	A1	1.1b
		(:	5 marks)
	Notes		
	B1: for $x = 0$, may be seen on Venn diagram		
	 M1: Identifying the probabilities required for independence and at least 2 correct These must be labelled If there are no labels, then this may be implied by z = (0.1 + z + y)(0.39 + z [+x]), allow one numerical slip Allow e.g. P(A') = 0.39 + 0.30 + 0.06[+x] P(C) = 0.39 + z[+x] P(A' and C) = 0.39 [Not on spec, but you may see use of conditional probabilities] 		
 M1: Use of independence equation with their labelled probabilities in terms y, z [and x] All their probabilities must be substituted into a correct formula Sight of a correct equation e.g. z = (0.1 + z + y)(0.39 + z [+x]) scores M1M1 M1: Using Σp = 1 Invalid her [n+h n+h = 0.15] 			rms es M1M1
	or their $x + y + z = 0.15$ where x, y, and z are all probab or e.g. $P(A) = 0.25$	oilities	
	y = 0.02 and $2 = 0.15$		

www.yesterdaysmathsexam.com

Qu	estion	Scheme	Marks	AOs
3		Overall method	M1	2.1
		a+b=2c+0.5 oe or $a+b=2(1-a-b)$	B1	2.2a
		a+b+c=0.75 oe	B1	1.1b
		$3c = 0.25$ $\left[c = 0.0833 \text{ or } \frac{1}{12}\right]$	M1	1.1b
		P(scoring 2,4 or 4,2 or 3,3) = $2 \times "\frac{1}{12}" \times 0.15 + 0.1^2$	M1	3.1b
		= 0.035 oe	Alcso	1.1b
			(6)	• `
		Notos	(6	marks)
3	M1:	M1: A fully correct method with all the required steps. For gaining 2 correct equations with at least one correct(allow if unsimplified). Attempting to solve to find a value of <i>c</i> followed by correct method to find the probability		
	B1:	I: Forming a correct equation from the information given in the question		
	B1:	B1: A correct equation using the sum of the probabilities equals 1		
	M1: Correct method for solving 2 equations to find <i>c</i> Implied by $c = \frac{1}{12}$			
	M1: Recognising the ways to get a total of 6. Condone missing arrangments or repeats. Do not ignore extras written unless ignored in the calculation. May be implied by $m \times "\frac{1}{12}" \times 0.15 + n \times 0.1^2 \text{ where } m \text{ and } n \text{ are positive integers}$		Do not	
	A1cso:	Cao 0.035, $\frac{7}{200}$ oe		

Questio	n Scheme	Marks	AOs	
3 (a)	p = [1 - 0.75 - 0.05 =] 0.20	B1	1.1b	
		(1)		
(b)	<i>q</i> = <u>0.15</u>	B1ft	1.1b	
	P(A) = 0.35 $P(T) = 0.6$ $P(A and T) = 0.20P(A) \times P(T) = 0.21$	M1	2.1	
	Since $0.20 \neq 0.21$ therefore <i>A</i> and <i>T</i> are not independent	A1	2.4	
		(3)		
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
(c)	P(not [A or C]) = 0.45	B1	1.1b	
		(1)		
Notes:		(5 11		
(a) B1: ca	cao for $p = 0.20$			
(b) B1: F M1: F a:	Ft for use of their <i>p</i> and P(<i>A</i> or <i>T</i>) to find <i>q</i> i.e. $0.75 - "p" - 0.40$ or $q = 0.15$ For the statement of all probabilities required for a suitable test and sight of any appropriate calculations required			
(c) A1: A B1: c	All probabilities correct, correct comparison and suitable comment cao for 0.45			

Question	Scheme	Marks
4.(a)	$[P(\text{both blue}) = \frac{1}{20} \times \frac{1}{20} =]\frac{1}{400} \text{ oe}$	B1
		(1)
(b)	P(exactly 1 red) = $2 \times \frac{1}{20} \times \frac{19}{20}$, = $\frac{19}{200}$ oe	M1, A1
		(2)
(c)	P(2 yellow and 1 green)= $3 \times \frac{4}{9} \times \frac{5}{8} \times \frac{4}{7} = \frac{10}{21}$ oe	B1 M1 A1
	5 4 2 2	(3)
(a)	P(All beads are yellow) = $\frac{5}{9} \times \frac{4}{8} \times \frac{5}{7} \times \frac{2}{6}$	1111
	P(At least 1 bead is green) = 1 - P(All beads are yellow)	
	1 - 5 - 4 - 3 - 2 - 121	M1 A 1
	$1 - \frac{1}{9} - \frac{1}{8} - \frac{1}{7} - \frac{1}{6} - \frac{1}{126}$	WIIAI
		(3) Total 9
	Notes	
(a)	B1 $\frac{1}{10000000000000000000000000000000000$	
	400	
(b)	M1 for a correct equivalent expression $\frac{1}{20} \times \frac{19}{20} + \frac{19}{20} \times \frac{1}{20}$	
	A1 $\frac{19}{200}$ or 0.095	
(c)	B1 for $3 \times \dots$ or for the sum of exactly 3 identical products attempted	
	M1 for any one product correct	
	A1 $\frac{10}{21}$ (allow awrt 0.476 from correct working)	
(d)	$1^{\text{st}} \text{M1} \frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}$	
	2^{nd} M1 Use of $1 - p$ (where p is a product of 4 probabilities)	
	A1 $\frac{121}{126}$ (condone awrt 0.960 must be at least 3sf from correct working)	
	OR	
	1 st M1 List all 15 favourable outcomes <u>and</u> at least one correct product	
	$(YYGG) \times 6 [(YGYG), (YGGY), (GYYG), (GYGY), (GYY)]$	
	(GGYG)×4 [(GGGY), (YGGG), (GYGG)] (GGGG)	
	2 nd M1 Sum all 15 correct probabilities	
	A1 $\frac{121}{126}$ (condone awrt 0.960 must be at least 3sf from correct working)	

Question Number	Scheme	Marks
2. (a)	(The event that) the integer selected is <u>prime</u> <u>and</u> <u>ends in a 3</u> (and is between 1 and 50 inclusive)	B1
(b)	$\frac{15}{50}$ (or equivalent e.g. 0.30) [condone 30%]	(1) B1 (1)
(c)	$\frac{12}{50}$ (or equivalent e.g. 0.24) [condone 24%]	B1 (1)
(d)	$\left[P(A C) = \right] \frac{P(A \cap C)}{P(C)} = \frac{\frac{7}{50}}{\frac{30}{50}} =, \frac{7}{\underline{30}}$	M1, <u>A1</u> (2)
(e)	$\frac{15}{50} \neq \frac{7}{30}$, so not independent.	M1, A1 (2)
(f)	$\left[P(B (A \cap C)) = \right] \frac{P(B \cap A \cap C)}{P(A \cap C)} = \frac{\frac{2}{50}}{\frac{7}{50}} =, \frac{2}{\frac{7}{50}}$	M1, <u>A1</u> (2) [9 marks]
(d)	M1 for a correct ratio expression (may be in words) with at least one correct pr	obbility
	substituted or correct ratio expression and $\frac{7}{n}$ or $\frac{m}{30}$ where $7 < n$ or $m < 30$	
	or fully correct ratio of probabilities.	
	A1 for $\frac{7}{30}$ or any exact equivalent e.g. 0.23 but 0.233 is M1A0 (Correct ans o	nly = M1A1)
(e)	 M1 for correctly comparing 'their (b)' with 'their (d)', can be in words or symbols. A1 dependent on a correct (b) and (d) (or awrt 0.233 in (d)) and for concluding not independent 	pols g
SC	For a correct test using correctly labelled $P(A) = \frac{15}{50}$, $P(C) = \frac{30}{50}$ and $P(A) = \frac{15}{50}$	$\gamma(C) = \frac{7}{50}$
SC	with all correct probabilities and $\frac{15}{50} \times \frac{50}{50} = \frac{9}{50} \neq \frac{7}{50}$ (o.e.) seen leading to	
	"not independent" score M0A1	
(f)	M1 for a correct ratio expression (may be in words) with at least one correct pr	obability
	substituted or correct ratio expression and $\frac{r}{7}$ or $\frac{2}{7}$ where $r < 7$ or $2 < t$	
	or fully correct ratio of probabilities / t	
	A1 for $\frac{2}{7}$ or an exact equivalent. Allow awrt 0.286 here as well.(Correct ans. c	only = M1A1)

Question Number	Scheme	Marks
4.(a)	0.7 Pass 0.3 Fail 0.5 Pass 0.5 Pass 0.5 Pass 0.3 Pass 0.7 Fail 0.3 Pass 0.7 Fail 0.3 Pass 0.7 Fail 0.9 Fail	B1 B1
(b)	$1 - 0.3 \times 0.5 \times 0.7 \times 0.9 \underline{\text{or}} 0.7 + (0.3 \times 0.5) + (0.3 \times 0.5 \times 0.3) + (0.3 \times 0.5 \times 0.7 \times 0.1)$ $= \underline{0.9055}$	(2) M1 A1
(c)	$\left[P(P_1 \cup P_2 \text{Pass}) = \right] \frac{0.7 + "0.3" \times 0.5}{(b)}, = \frac{0.85}{"0.9055"} = 0.938707 = \text{awrt} \ \underline{0.939}$	(2) M1, A1ft A1
(d)	$p + (1-p)(p-0.2) \underline{\text{or}} 1 - (1-p)(1.2-p) \text{(o.e.)}$ e.g. $p + p - p^2 + 0.2p - 0.2 = 0.95 \Rightarrow p^2 - 2.2p + 1.15 = 0 (*)$	(3) M1 dM1A1cso
(e)	$p = \frac{2.2 \pm \sqrt{2.2^2 - 4 \times 1.15}}{2} \underline{\text{or}} \text{Complete the sq:} (p - 1.1)^2 - 1.1^2 + 1.15 = 0$ $= \frac{2.2 \pm 0.4898}{2} \underline{\text{or}} \frac{2.2 \pm \sqrt{0.24}}{2} \underline{\text{or}} 1.1 \pm \sqrt{0.06} \underline{\text{or}} (1.34), 0.855$ $p = 0.85505102 p = \underline{0.855}$	(3) M1 A1 A1
	Notos	(3)
(a)	1st B1for correctly placing 0.3 and 0.52 nd B1for correctly placing 0.7, 0.1 and 0.9	
(b)	Apart from (d), a correct answer with no incorrect working scores full marks.M1for a correct expression (ft from their tree diagram)A1for 0.9055 or exact equivalent e.g. $\frac{1811}{2000}$ Accept 0.906 only if correct expr' seen	
(c)	M1 for a correct ratio of probs ft their 0.3 and their answer to (b)[if < 1]. No A1ft for correct numerator and their part (b) on denominator A1 for awrt 0.939 or accept exact fraction eg $\frac{1700}{1811}$	um > Den M0
(d)	1^{st} M1for a correct expression for P(pass) in terms of $p[$ condone $p - (p-1)(p-0.2)$ etc] 2^{nd} dM1dep. on 1^{st} M1 for expanding brackets and forming an equation in p Allow one slip	
	A loso correct processing leading to printed answer. No incorrect working	seen.
(e)	M1 for attempt to solve given equation, correct expression. Condone just $1^{st} A1$ for correct expression and simplified square root or 1.34 and 0.855 $2^{nd} A1$ for $p = 0.855$ only (penalise any extra value > 1) Correct ans only so	$t + not \pm$ cores 3/3
Ans. only	For $\frac{1}{10}(11-\sqrt{6})$ or 0.855 score M1A1A0 (not to 3dp) but for 0.855 can see	ore M1A1A1

Question Number	Scheme	Marks
5. (a)	$ \begin{array}{c c} S & \hline 30 & 12 \\ \hline 25 & \hline 30 & 12 \\ \hline (32) \\ \hline \end{array} \text{ or } \begin{array}{c} F & \hline 0 & \hline 0 & 0 \\ \hline 25 & \hline 25 & S \\ \hline 25 & S \end{array} (33) \end{array} $	B1 B1 B1 B1
(b)	F and S or R and S	B1 (1)
(c)	$P\left(\left[F \cup R \cup S\right]'\right) = \frac{33}{100} \text{ or } \underline{0.33}$	B1
(d)	$P(R) = \frac{30 + 12}{100} = \frac{21}{50} \text{or } \underline{0.42}$	(1) B1 (1)
(e)	$P(F \cup S) = \frac{30+25}{100} = \frac{11}{20} \text{ or } \underline{0.55}$	B1 (1)
(f)	$\left[P(F \mid R) \right] = \frac{P(F \cap R)}{P(R)} = \frac{"0.30"}{"0.42"}$	(1) M1
	$=\frac{50}{42}$ or $\frac{5}{7}$ (o.e.)	A1 (2) Total 10
(a)	NotesIn the diagram do not treat a blank space as zero. Allow probabilities or integers 1^{st} B1 for 3 labelled loops and a box. The 33 is not required for any marks in (a) 2^{nd} B1 for $F \subset R$ or indicated by zeros 2^{rd} D1 for 20 and 12 compatibulated and $r(E) = 20$ and $r(E' \in R)$ 2^{rd} D1 for 20 and 12 compatibulated and $r(E) = 20$ and $r(E' \in R)$	
	4^{th} B1 for S a separate loop, or indicated by zeros, and the 25	
(b)	B1 for a correct pair. If there is more than one pair then each pair must be correct. Do not allow $P(F)$ etc or e.g. $P(R \cap S) = 0$	
(c),(d),(e)	B1 cao for each answer. Accept any exact equivalent (fractions or decimals) for the probabilities	
(f)	M1 ft their "30" and their answer to (d). For a correct ratio of their probabilities or a correct ratio expression and at least one correct probability. If num > den score M0 A1 for $\frac{5}{7}$ or any exact equivalent. Must be proper fraction not $\frac{0.3}{0.42}$	
	NB $\frac{0.3}{0.42} = 0.714$ is A0 since it is not a proper fraction and the answer is r	not exact
	Condone $P(R F) = \frac{30}{42}$ and allow M1A1 for the correct answer	
	but $P(R F) = \frac{P(R \cap F)}{P(F)} = \frac{0.30}{0.42} = \frac{30}{42}$ is M0A0	