

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA038467 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{1}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number		Scheme	Marks			
1.		$x^3 + 2xy - x - y^3 - 20 = 0$				
(a)		$\left\{ \underbrace{\underbrace{x}}_{x} \times \right\} \underline{3x^2} + \left(\underbrace{2y + 2x \frac{dy}{dx}}_{x} \right) \underbrace{-1 - 3y^2 \frac{dy}{dx}}_{x} = 0$				
	$3x^{2} + 2y - 1 + (2x - 3y^{2})\frac{dy}{dx} = 0$					
	$\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x} \text{or} \frac{1 - 3x^2 - 2y}{2x - 3y^2}$ A1					
(b)	At P(3, -2), $m(\mathbf{T}) = \frac{dy}{dx} = \frac{3(3)^2 + 2(-2) - 1}{3(-2)^2 - 2(3)}; = \frac{22}{6} \text{ or } \frac{11}{3}$	[5]			
	and ei	ther T: $y - 2 = \frac{11}{3}(x - 3)$ see notes	M1			
		or $(-2) = \left(\frac{11}{3}\right)(3) + c \implies c =,$				
	T : 11.	x - 3y - 39 = 0 or $K(11x - 3y - 39) = 0$	A1 cso			
			[2] 7			
	Alterr	native method for part (a)				
(a)	$\left\{ \frac{\lambda}{\lambda} \times \frac{1}{\lambda} \times \frac{3x^2 \frac{dx}{dy}}{dy} + \left(\frac{2y \frac{dx}{dy} + 2x}{dy} \right) - \frac{dx}{dy} - 3y^2 = 0 \right\}$					
	$2x - 3y^{2} + (3x^{2} + 2y - 1)\frac{dx}{dy} = 0$ dM1					
	$\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x} \text{or} \frac{1 - 3x^2 - 2y}{2x - 3y^2}$ A1 cso					
	[5] Question 1 Notes					
(a) General	Note	$dy = 3x^2 + 2y - 1$ $1 - 3x^2 - 2y$				
	Note	Note Writing down $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{2x - 3y^2}$ or $\frac{1 - 3x^2 - 2y}{3y^2 - 2x}$ from no working is M1A0B0M1A0				
	Note	Note Few candidates will write $3x^2 + 2y + 2x dy - 1 - 3y^2 dy = 0$ leading to $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$, o.e.				
		This should get full marks.				
1. (a)	M1	M1 Differentiates implicitly to include either $2x \frac{dy}{dx}$ or $-y^3 \rightarrow \pm k y^2 \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).				
		A1 $x^3 \to 3x^2$ and $-x - y^3 - 20 = 0 \to -1 - 3y^2 \frac{dy}{dx} = 0$				
	B 1	$2xy \rightarrow 2y + 2x \frac{dy}{dx}$				
	Note	If an extra term appears then award 1^{st} A0.				

1. (a)		a dy a dy a dy dy			
ctd	Note	$3x^{2} + 2y + 2x\frac{dy}{dx} - 1 - 3y^{2}\frac{dy}{dx} \rightarrow 3x^{2} + 2y - 1 = 3y^{2}\frac{dy}{dx} - 2x\frac{dy}{dx}$			
		will get 1^{st} A1 (implied) as the "= 0" can be implied by rearrangement of their equation.			
	dM1	dependent on the first method mark being awarded.			
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are <i>at least two terms</i> in $\frac{dy}{dx}$.			
		ie + $(2x - 3y^2)\frac{dy}{dx} =$			
	Note	Placing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1.			
	A1	or $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$			
		cso: If the candidate's solution is not completely correct, then do not give this mark.isw: You can, however, ignore subsequent working following on from correct solution.			
1. (b)	M1	Some attempt to substitute both $x = 3$ and $y = -2$ into their $\frac{dy}{dx}$ which contains both x and y			
		to find m_T and			
		• either applies $y - 2 = (\text{their } m_T)(x - 3)$, where m_T is a numerical value.			
		• or finds c by solving $(-2) = (\text{their } m_T)(3) + c$, where m_T is a numerical value.			
	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ is M0).			
	A1	ccept any integer multiple of $11x - 3y - 39 = 0$ or $11x - 39 - 3y = 0$ or $-11x + 3y + 39 = 0$, here their tangent equation is equal to 0.			
		correct solution is required from a correct $\frac{dy}{dx}$.			
	CSO	dx			
	isw	You can ignore subsequent working following a correct solution.			
	Altern	ative method for part (a): Differentiating with respect to y			
1. (a)	M1	Differentiates implicitly to include either $2y\frac{dx}{dy}$ or $x^3 \rightarrow \pm kx^2\frac{dx}{dy}$ or $-x \rightarrow -\frac{dx}{dy}$			
		(Ignore $\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)$).			
		$x^3 \rightarrow 3x^2 \frac{\mathrm{d}x}{\mathrm{d}y}$ and $-x - y^3 - 20 = 0 \rightarrow -\frac{\mathrm{d}x}{\mathrm{d}y} - 3y^2 = 0$			
	B1	$2xy \to 2y\frac{\mathrm{d}x}{\mathrm{d}y} + 2x$			
	dM1	dependent on the first method mark being awarded.			
		An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are <i>at least two terms</i> in $\frac{dx}{dy}$.			
	A1	For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$			
		cso: If the candidate's solution is not completely correct, then do not give this mark.			
L					

Question Number		Scheme	Marks		
2.	{(1+	$kx)^{-4} = 1 + (-4)(kx) + \frac{(-4)(-4-1)}{2!}(kx)^{2} + \dots \bigg\}$			
(a)	C C	Either $(-4)k = -6$ or $(1 + kx)^{-4} = 1 + (-4)(kx)$ see notes			
		leading to $k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$	A1		
		Either $\frac{(-4)(-5)}{(-5)}$ or $(k)^2$ or $(kx)^2$	[2] M1		
(b)		$\frac{(-4)(-5)}{2}(k)^{2}$ Either $\frac{(-4)(-5)}{2!}(k)^{2}$ or $\frac{(-4)(-5)}{2!}(kx)^{2}$			
	$\begin{cases} A = \end{cases}$	$\frac{(-4)(-5)}{2!} \left(\frac{3}{2}\right)^2 \Rightarrow A = \frac{45}{2} \qquad \qquad \frac{45}{2} \text{ or } 22.5$	A1		
			[3] 5		
		Question 2 Notes			
Note	In this	s question ignore part labelling and mark part (a) and part (b) together. (-4)(-4-1)			
	Note	Writing down $\left\{ (1+kx)^{-4} \right\} = 1 + (-4)(kx) + \frac{(-4)(-4-1)}{2!}(kx)^2 + \dots$			
		gets all the method marks in Q2. i.e. (a) M1 and (b) M1M1			
(a)	M1	Award M1 for			
		• either writing down $(-4)k = -6$ or $4k = 6$			
		• or expanding $(1 + kx)^{-4}$ to give $1 + (-4)(kx)$			
		• or writing down $(-4)k x = -6$ or $(-4k) = -6x$ or $-4k x = -6x$			
	A1	$k = \frac{5}{2}$ or 1.5 or $\frac{6}{4}$ from no incorrect sign errors.			
	Note	The M1 mark can be implied by a candidate writing down the correct value of k .			
	Note Note	Award M1 for writing down $4k = 6$ and then A1 for $k = 1.5$ (or equivalent). Award M0 for $4k = -6$ (if there is no evidence that $(1 + kx)^{-4}$ expands to give $1 + (-4kx)^{-4}$	(kx) + 0		
		2			
	Note	$1 + (-4)(kx)$ leading to $(-4)k = 6$ leading to $k = \frac{3}{2}$ is M1A0.			
(b)	M1	For either $\frac{(-4)(-4-1)}{2!}$ or $\frac{(-4)(-5)}{2!}$ or 10 or $(k)^2$ or $(kx)^2$	-		
	M1	Either $\frac{(-4)(-4-1)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(kx)^2$ or $\frac{(-4)(-5)}{2!}(their k)^2$	or $10k^2$		
	Note	Candidates are allowed to use 2 instead of 2!			
	A1	Uses $k = 1.5$ to give $A = \frac{45}{2}$ or 22.5			
	Note	$A = \frac{90}{4}$ which has not been simplified is A0.			
	Note	Award A0 for $A = \frac{45}{2}x^2$.			
		Allow A1 for $A = \frac{45}{2}x^2$ followed by $A = \frac{45}{2}$			
	Note	$k = -1.5$ leading to $A = \frac{45}{2}$ or 22.5 is A0.			

Question Number				Schei	me		Marks
	r	1	2	3	4	10	
3.	$\frac{x}{v}$	1 1.42857	0.90326	0.682116	0.55556	$y = \frac{10}{2x + 5\sqrt{x}}$	
(a)	${\operatorname{At} x}$	=3, y = 0.6				0.68212	B1 cao
(b)	$\frac{1}{2} \times 1 \times$	< 1.42857 +	0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.55556 + 2(0.5556 + 2(0.5556 + 2(0.5556 + 2(0.5556 + 2(0.5556 + 2(0.5556 + 2(0.5556 + 2(0.5556 + 2(0.5556 + 2(0.5566 + 2(0.566 + 2(0.5666 + 2(0.5666 + 2(0.5666 + 2(0.5666 + 2(0.5666 + 2(0.5666 + 2(0.5666 + 2(0.5666 + 2(0.5666 + 2(0.566 + 2(0.5666 + 2(0.5666 + 2(0.5666 +	.90326 + their 0	.68212)]	Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ For structure of []	[1] B1 aef M1
	$\Big\{= \frac{1}{2}\Big($	5.15489) } = 1	2.577445 = 2.5	5774 (4 dp)		anything that rounds to 2.5774	A1 [3]
(c)	• • •	a diagram v concave or	us <u>pezia lie above</u> which gives ref convex an be implied) rds	ference to the ex	tra area		B1
(d)	$\begin{cases} u = x \end{cases}$		$\frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{dx}{dy}$	= <i>2</i> µ			[1] B1
		$\frac{10}{u^2 + 5u} \cdot 2u c$	$\Delta $ uu		$\frac{\pm k u}{u^2 \pm \beta u} \left\{ \mathrm{d} u \right.$	$ or \left\{ \int \right\} \frac{\pm k}{u \left(\alpha u^2 \pm \beta u \right)} \left\{ du \right\} $	M1
	{=	$\left\{\frac{20}{2u+5} du\right\}$	$b = \frac{20}{2} \ln(2u +$	-5)		$(2u+5)$ or $\pm \lambda \ln\left(u+\frac{5}{2}\right)$, $\lambda \neq 0$ with no other terms.	M1
	J	2 <i>u</i> + 5 j	2		$\frac{20}{2u+5} \rightarrow$	$\frac{20}{2}\ln(2u+5)$ or $10\ln\left(u+\frac{5}{2}\right)$	A1 cso
	· ·)	$+5) - 10\ln(2(1))$		Substitutes limits of 2 and 1 in u (or 4 and 1 in x) and subtracts the correct way round.	M1
	101n9	$-10\ln 7$ or	$10\ln\left(\frac{9}{7}\right)$ or	$20\ln 3 - 10\ln 7$	7		A1 oe cso
			(T)				[6] 11
	T 4	0.60010			estion 3 Note		
3. (a)	B 1					or in the candidate's working.	
(b)	B1	Outside brac	ckets $\frac{1}{2} \times 1$ or	$\frac{1}{2}$ or equivalent	t.		
	M1 Note A1	For structure No errors ar	e of trapezium	<u>rule</u> [. an omission of	.]	r an extra y-ordinate or a repeated	y ordinate].
	Note	Working mu	ist be seen to c	lemonstrate the	use of the trap	ezium rule. (Actual area is 2.513)	14428)

3. (b) contd	Note	Award B1M1A1 for $\frac{1}{2}(1.42857 + 0.55556) + (0.90326 + \text{their } 0.68212) = 2.577445$				
		Bracketing mistake: Unless the final answer implies that the calculation has been done correctly award B1M0A0 for $\frac{1}{2} \times 1 + 1.42857 + 2(0.90326 + \text{their } 0.68212) + 0.55556$ (nb: answer of 5.65489).				
		award B1M0A0 for $\frac{1}{2} \times 1$ (1.42857 + 0.55556) + 2(0.90326 + their 0.68212) (nb: answer of 4.162825).				
		<u>Alternative method: Adding individual trapezia</u> Area $\approx 1 \times \left[\frac{1.42857 + 0.90326}{2} + \frac{0.90326 + "0.68212"}{2} + \frac{"0.68212" + 0.55556}{2} \right] = 2.577445$				
	B1 M1	B1: 1 and a divisor of 2 on all terms inside brackets.M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.				
(c)	A1 B1	A1: anything that rounds to 2.5774 Overestimate and either trapezia lie above curve or a diagram that gives reference to the extra area				
		eg. This diagram is sufficient. It must show the top of a trapezium lying above the curve.				
		or concave or convex or $\frac{d^2 y}{dx^2} > 0$ (can be implied) or bends inwards or curves downwards.				
	Note	Reason of "gradient is negative" by itself is B0.				
(d)	B1	$\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}} \text{ or } du = \frac{1}{2\sqrt{x}}dx \text{ or } 2\sqrt{x}du = dx \text{ or } dx = 2u du \text{ or } \frac{dx}{du} = 2u \text{ o.e.}$				
	M1	Applying the substitution and achieving $\left\{ \int \right\} \frac{\pm k u}{\alpha u^2 \pm \beta u} \left\{ du \right\}$ or $\left\{ \int \right\} \frac{\pm k}{u \left(\alpha u^2 \pm \beta u \right)} \left\{ du \right\}$,				
		$k, \alpha, \beta \neq 0$. Integral sign and du not required for this mark.				
	M1	Cancelling <i>u</i> and integrates to achieve $\pm \lambda \ln(2u+5)$ or $\pm \lambda \ln\left(u+\frac{5}{2}\right)$, $\lambda \neq 0$ with no other terms.				
	A1	cso. Integrates $\frac{20}{2u+5}$ to give $\frac{20}{2}\ln(2u+5)$ or $10\ln\left(u+\frac{5}{2}\right)$, un-simplified or simplified.				
	Note	BE CAREFUL! Candidates must be integrating $\frac{20}{2u+5}$ or equivalent.				
		So $\int \frac{10}{2u+5} du = 10 \ln(2u+5)$ WOULD BE A0 and final A0.				
	M1	Applies limits of 2 and 1 in u or 4 and 1 in x in their (i.e. any) changed function and subtracts the correct way round.				
	A1	Exact answers of either $10\ln 9 - 10\ln 7$ or $10\ln\left(\frac{9}{7}\right)$ or $20\ln 3 - 10\ln 7$ or $20\ln\left(\frac{3}{\sqrt{7}}\right)$ or $\ln\left(\frac{9^{10}}{7^{10}}\right)$				
	Note Note	or equivalent. Correct solution only. You can ignore subsequent working which follows from a correct answer. A decimal answer of 2.513144283 (without a correct exact answer) is A0.				

Question		Scheme	Marks		
Number 4.	$\frac{\mathrm{d}V}{\mathrm{d}V}$	80π , $V = 4\pi h(h+4) = 4\pi h^2 + 16\pi h$,			
	$\frac{dt}{dt}$		M1		
		$\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 16\pi \qquad \qquad \pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0 \\ 8\pi h + 16\pi \qquad \qquad$			
	∫dV		A1		
	$\int dh$	$\times \frac{dh}{dt} = \frac{dV}{dt} \Rightarrow \left\{ (8\pi h + 16\pi) \frac{dh}{dt} = 80\pi \right\} \left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80\pi$	M1 oe		
	$\left\{\frac{dh}{dt} = \frac{dV}{dt} \div \frac{dV}{dh} \Longrightarrow\right\} \frac{dh}{dt} = 80\pi \times \frac{1}{8\pi h + 16\pi} \text{or} 80\pi \div \text{Candidate's } \frac{dV}{dh}$				
	When	$h = 6, \ \left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \right\} \frac{1}{8\pi(6) + 16\pi} \times 80\pi \ \left\{=\frac{80\pi}{64\pi}\right\}$ dependent on the previous M1 see notes	dM1		
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 1$	$1.25 \text{ or } \frac{5}{4} \text{ or } \frac{10}{8} \text{ or } \frac{80}{64}$	A1 oe		
			[5] 5		
	Altern	ative Method for the first M1A1			
	Produc	et rule: $\begin{cases} u = 4\pi h & v = h + 4 \\ \frac{du}{dh} = 4\pi & \frac{dv}{dh} = 1 \end{cases}$			
	110000	$\begin{bmatrix} \frac{du}{dh} = 4\pi & \frac{dv}{dh} = 1 \end{bmatrix}$			
	$\frac{\mathrm{d}V}{\mathrm{d}V} =$	$4\pi(h+4) + 4\pi h \qquad \qquad \pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0 \\ 4\pi(h+4) + 4\pi h \qquad $	M1		
	dh	$4\pi(h+4) + 4\pi h$	A1		
		Question 4 Notes			
	M1	An expression of the form $\pm \alpha h \pm \beta$, $\alpha \neq 0$, $\beta \neq 0$. Can be simplified or un-simplified	ed.		
	A1	Correct simplified or un-simplified differentiation of V. eg. $8\pi h + 16\pi$ or $4\pi(h+4) + 4\pi h$ or $8\pi(h+2)$ or equivalent.			
	Note	Some candidates will use the product rule to differentiate V with respect to h . (See Alt N	Aethod 1).		
	Note	$\frac{\mathrm{d}V}{\mathrm{d}h}$ does not have to be explicitly stated, but it should be clear that they are differentiati	ng their V.		
	M1	$\left(\text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h} \right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \text{or} 80\pi \div \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h}$			
	Note	Also allow 2 nd M1 for $\left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80$ or $80 \div \text{Candidate's } \frac{dV}{dh}$			
	Note	Give 2 nd M0 for $\left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80 \pi t \text{ or } 80k \text{ or } 80\pi t \text{ or } 80k \div \text{Candidate's}$	$\frac{\mathrm{d}V}{\mathrm{d}h}$		
	dM1	which is dependent on the previous M1 mark.			
		Substitutes $h = 6$ into an expression which is a result of a quotient of their $\frac{dV}{dh}$ and 80π	(or 80)		
	A1	1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$ (units are not required).			
	Note	$\frac{80\pi}{64\pi}$ as a final answer is A0.			
	Note	Substituting $h = 6$ into a correct $\frac{dV}{dh}$ gives 64π but the final M1 mark can only be awar	ded if this		
		is used as a quotient with 80π (or 80)			
L	1				

Question Number	Scheme	Marks
5.	$x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$	
	Main Scheme	
(a)	$x = 4 \left(\cos t \cos \left(\frac{\pi}{6} \right) - \sin t \sin \left(\frac{\pi}{6} \right) \right) \qquad \qquad \cos \left(t + \frac{\pi}{6} \right) \to \cos t \cos \left(\frac{\pi}{6} \right) \pm \sin t \sin \left(\frac{\pi}{6} \right)$	M1 oe
	So, $\{x + y\} = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$ Adds their expanded x (which is in terms of t) to $2\sin t$	dM1
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) + 2\sin t$	
	$=2\sqrt{3}\cos t$ * Correct proof	A1 * [3]
(a)	Alternative Method 1	
	$x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) = 2\sqrt{3}\cos t - 2\sin t$	
	So, $x = 2\sqrt{3}\cos t - y$ Forms an equation in <i>x</i> , <i>y</i> and <i>t</i> .	dM1
	$x + y = 2\sqrt{3}\cos t$ * Correct proof	
	Main Scheme	[3]
(b)	$\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only <i>x</i> 's and <i>y</i> 's.	M1
	$\Rightarrow \frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$	
	$\Rightarrow (x + y)^{2} + 3y^{2} = 12 \qquad (x + y)^{2} + 3y^{2} = 12 \{a = 3, b = 12\}$	A1 [2]
(b)	Alternative Method 1	
	$(x + y)^{2} = 12\cos^{2} t = 12(1 - \sin^{2} t) = 12 - 12\sin^{2} t$	
	So, $(x + y)^2 = 12 - 3y^2$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only <i>x</i> 's and <i>y</i> 's.	
	$\Rightarrow (x + y)^{2} + 3y^{2} = 12 \qquad (x + y)^{2} + 3y^{2} = 12$	A1 [2]
(b)	Alternative Method 2	
	$(x+y)^2 = 12\cos^2 t$	
	As $12\cos^2 t + 12\sin^2 t = 12$	
	then $(x + y)^2 + 3y^2 = 12$	M1, A1 [2]
		5

		Question 5 Notes
5. (a)	M1	$\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right) \text{or} \cos\left(t + \frac{\pi}{6}\right) \to \left(\frac{\sqrt{3}}{2}\right) \cos t \pm \left(\frac{1}{2}\right) \sin t$
	Note	If a candidate states $cos(A + B) = cos A cos B \pm sin A sin B$, but there is an error <i>in its application</i>
		then give M1.
		Awarding the dM1 mark which is dependent on the first method mark
Main	dM1	Adds their expanded x (which is in terms of t) to $2\sin t$
	Note	Writing $x + y =$ is not needed in the Main Scheme method.
Alt 1	dM1	Forms an equation in <i>x</i> , <i>y</i> and <i>t</i> .
	A1*	Evidence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors.
	Note	${x + y} = 4\cos\left(t + \frac{\pi}{6}\right) + 2\sin t$, by itself is M0M0A0.
(b)	M1	Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only <i>x</i> 's and <i>y</i> 's.
	A1	leading $(x + y)^2 + 3y^2 = 12$
	SC	Award Special Case B1B0 for a candidate who writes down either
		• $(x + y)^2 + 3y^2 = 12$ from no working
		• $a = 3, b = 12$, but <u>does not provide a correct proof</u> .
	Note	Alternative method 2 is fine for M1 A1
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b \implies a = 3, b = 12$ is SC: B1B0
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b$
		• states $a = 3, b = 12$
		• and refers to either $\cos^2 t + \sin^2 t = 1$ or $12\cos^2 t + 12\sin^2 t = 12$
		• and there is no incorrect working
		would get M1A1
1		

Number 6. (i) $\int xe^{4x} dx = \frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\}$ $= \frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} \{+c\}$	$\pm \alpha x e^{4x} - \int \beta e^{4x} \{ dx \}, \alpha \neq 0, \beta > 0$ $\frac{1}{4} x e^{4x} - \int \frac{1}{4} e^{4x} \{ dx \}$	M1	
	4 2 4		
$=\frac{1}{4}xe^{4x}-\frac{1}{16}e^{4x}\{+c\}$	1 + 4x + 4x + 1 + 4x	A1	
	$\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$	A1	[2]
$(2 - 1)^{-2}$	$\pm\lambda(2x-1)^{-2}$	M1	[3]
(ii) $\int \frac{8}{(2x-1)^3} \mathrm{d}x = \frac{8(2x-1)^{-2}}{(2)(-2)} \left\{ + c \right\}$	(2)(-2)	A1	
$\left\{ = -2(2x-1)^{-2} \left\{ + c \right\} \right\}$	{Ignore subsequent working}.		[2]
(iii) $\frac{dy}{dx} = e^x \operatorname{cosec} 2y \operatorname{cosec} y$ $y = \frac{2}{6}$	at $x = 0$		
Main Scheme			
$\int \frac{1}{\operatorname{cosec} 2y \operatorname{cosec} y} \mathrm{d}y = \int \mathrm{e}^x \mathrm{d}x$	or $\int \sin 2y \sin y dy = \int e^x dx$	B1 oe	
$\int 2\sin y \cos y \sin y \mathrm{d}y = \int \mathrm{e}^x \mathrm{d}x$	Applying $\frac{1}{\csc 2y}$ or $\sin 2y \rightarrow 2\sin y \cos y$	M1	
	Integrates to give $\pm \mu \sin^3 y$	M1	
$\frac{2}{3}\sin^3 y = e^x \left\{ + c \right\}$	$2\sin^2 y \cos y \to \frac{2}{3}\sin^3 y$	A1	
	$e^x \rightarrow e^x$	B1	
$\frac{2}{3}\sin^3\left(\frac{\pi}{6}\right) = e^0 + c \text{or}$	$\frac{2}{3}\left(\frac{1}{8}\right) - 1 = c$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c	M1	
$\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} \frac{2}{3} \sin^3 y$		A1	
Alternative Method 1			[7]
$\int \frac{1}{\operatorname{cosec} 2y \operatorname{cosec} y} \mathrm{d}y = \int \mathrm{e}^x \mathrm{d}x$		B1 oe	
$\int -\frac{1}{2}(\cos 3y - \cos y) \mathrm{d}y = \int \mathrm{e}^x \mathrm{d}x$	$\sin 2y \sin y \to \pm \lambda \cos 3y \pm \lambda \cos y$	M1	
	Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$	M1	
$-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{+c\right\}$	$-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right)$	A1	
	$e^x \rightarrow e^x$ as part of solving their DE.	B1	
$-\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 +$	c or $-\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c	M1	
$\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} -\frac{1}{6} \sin 3$		A1	
			[7] 12

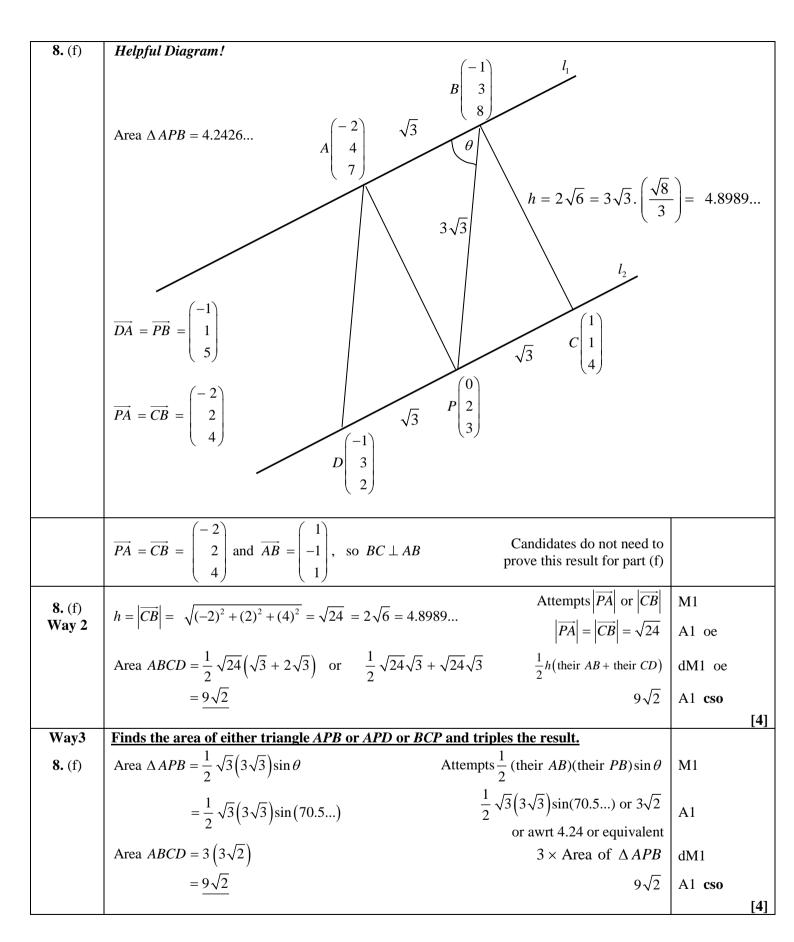
		Question	n 6 Notes		
6. (i)	M1	Integration by parts is applied in the form \pm	$\alpha x e^{4x} - \int \beta e^{4x} \{ dx \}$, where $\alpha \neq 0, \beta > 0$.		
		(must be in this form).	5		
	A1	$\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\} \text{ or equivalent.}$			
	A1	$\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ with/without + c. Can be u	in-simplified.		
	isw	You can ignore subsequent working following	-		
	SC	SPECIAL CASE: A candidate who uses <i>u</i> formula,	$= x$, $\frac{dv}{dx} = e^{4x}$, writes down the correct "by p	parts"	
		but makes only one error when applying it c	an be awarded Special Case M1.		
(ii)	M1	$\pm \lambda (2x-1)^{-2}, \lambda \neq 0$. Note that λ can be 1.			
	A1	$\frac{8(2x-1)^{-2}}{(2)(-2)} \text{ or } -2(2x-1)^{-2} \text{ or } \frac{-2}{(2x-1)^2}$	with/without + c . Can be un-simplified.		
	Note	You can ignore subsequent working which f	ollows from a correct answer.		
(iii)	B1	implied by later working. Ignore the integra	-	nark can be	
	Note	Allow B1 for $\int \frac{1}{\csc 2y \csc y} = \int e^x$	•		
	M1		$y\cos y$ or $\sin 2y\sin y \rightarrow \pm \lambda\cos 3y \pm \lambda\cos^2 y$	os y	
	M1	(iii). $\sin 3y \pm \beta \sin y, \ \alpha \neq 0, \ \beta \neq 0$,		
	A1	$2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y$ (with no extra terms) or integrates to give $-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right)$			
	B1	Evidence that e^x has been integrated to give	e^x as part of solving their DE.		
	M1	Some evidence of using both $y = \frac{\pi}{6}$ and $x =$	= 0 in an integrated or changed equation cont	aining <i>c</i> .	
	Note	that is mark can be implied by the correct va			
	A1	$\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ or $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y$	$e = e^x - \frac{11}{12}$ or any equivalent correct answ	ver.	
	Note Alternativ	You can ignore subsequent working which f re Method 2 (Using integration by parts two			
		$n y dy = \int e^x dx$		B1 oe	
	-	v	Applies integration by parts twice to give $\pm \alpha \cos y \sin 2y \pm \beta \sin y \cos 2y$	M2	
	$\frac{1}{3}\cos y\sin^2$	$2y - \frac{2}{3}\sin y\cos 2y = e^x \left\{+c\right\}$	$\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y$	A1	
			(simplified or un-simplified) $e^x \rightarrow e^x$ as part of solving their DE.	B1	
			as in the main scheme	M1	
	$\frac{1}{3}\cos y\sin^2$	$2y - \frac{2}{3}\sin y\cos 2y = e^x - \frac{11}{12}$	$-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$	A1	
				[7]	

Question Number	Scheme	Marks
7.	$x = 3\tan\theta$, $y = 4\cos^2\theta$ or $y = 2 + 2\cos 2\theta$, $0 \le \theta < \frac{\pi}{2}$.	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$, $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -8\cos\theta\sin\theta$ or $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -4\sin2\theta$	
	$\frac{dy}{dx} = \frac{-8\cos\theta\sin\theta}{3\sec^2\theta} \left\{ = -\frac{8}{3}\cos^3\theta\sin\theta = -\frac{4}{3}\sin2\theta\cos^2\theta \right\} \qquad \text{their } \frac{dy}{d\theta} \text{ divided by their } \frac{dx}{d\theta}$	M1
	Correct $\frac{-}{dx}$	A1 oe
	At $P(3, 2)$, $\theta = \frac{\pi}{4}$, $\frac{dy}{dx} = -\frac{8}{3}\cos^3\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right) \left\{=-\frac{2}{3}\right\}$ Some evidence of substituting $\theta = \frac{\pi}{4}$ into their $\frac{dy}{dx}$	M1
	So, $m(\mathbf{N}) = \frac{3}{2}$ applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1
	Either N: $y - 2 = \frac{3}{2}(x - 3)$	
	or $2 = \left(\frac{3}{2} \right)(3) + c$ see notes	M1
	{At Q , $y = 0$, so, $-2 = \frac{3}{2}(x-3)$ } giving $x = \frac{5}{3}$ $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67	A1 cso
	$\left[\int_{-2}^{2} dx + 0 \right] = \left[\int_{-2}^{2} dx + 0 \right] = \left[\int_{-2}^{2} dx + 0 \right]^{2} 2 x + 2 \left[\int_{-2}^{2} dx + 0 \right] = \left[\int_{-2}^{2} dx + 0 \right] = \left[\int_{-2}^{2} dx + 0 \right]^{2} = \left[\int_{-2}^{2} dx + 0 \right] = \left[$	[6]
(b)	$\left\{ \int y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta \right\} = \left\{ \int \left\{ 4\cos^2 \theta \right\}^2 3\sec^2 \theta \right\} $ see notes	M1
	So, $\pi \int y^2 dx = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$ see notes	A1
	$\int y^2 dx = \int 48\cos^2\theta d\theta \qquad $	A1
	$= \{48\} \int \left(\frac{1+\cos 2\theta}{2}\right) d\theta \left\{= \int (24+24\cos 2\theta) d\theta\right\} \qquad \text{Applies } \cos 2\theta = 2\cos^2 \theta - 1$	M1
	Dependent on the first method mark. For $\pm \alpha \theta \pm \beta \sin 2\theta$	dM1
	$= \{48\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right) \{= 24\theta + 12\sin 2\theta\} \qquad \qquad$	A1
	$\int_{0}^{\frac{\pi}{4}} y^{2} dx \left\{ = 48 \left[\frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right]_{0}^{\frac{\pi}{4}} \right\} = \left\{ 48 \right\} \left(\left(\frac{\pi}{8} + \frac{1}{4} \right) - (0+0) \right) \left\{ = 6\pi + 12 \right\} $ Dependent on the third method mark.	dM1
	{So $V = \pi \int_{0}^{\frac{\pi}{4}} y^2 dx = 6\pi^2 + 12\pi$ }	
	$V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \frac{5}{3}\right) \left\{ = \frac{16\pi}{9} \right\}$ $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \text{their } (a)\right)$	M1
	$\left\{ \text{Vol}(S) = 6\pi^2 + 12\pi - \frac{16\pi}{9} \right\} \Rightarrow \text{Vol}(S) = \frac{92}{9}\pi + 6\pi^2 \qquad \qquad \frac{92}{9}\pi + 6\pi^2$	A1
	$\left\{p = \frac{92}{9}, q = 6\right\}$	[9]
		15

7. (a) 1 ⁴ MI Applies their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$ or applies $\frac{dy}{d\theta}$ multiplied by their $\frac{d\theta}{dx}$ SC Award Special Case I ⁴ MI if both $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ are both correct. 1 ⁴ A1 Correct $\frac{dy}{dx}$ i.e. $-\frac{8\cos\theta}{3\sec^2\theta}$ or $-\frac{8}{3}\cos^2\theta\sin\theta$ or $-\frac{4}{3}\sin 2\theta\cos^2\theta$ or any equivalent form. 2 ⁴⁴ MI Some evidence of substituting $\theta = \frac{x}{4}$ or $\theta = 45^{\circ}$ into their $\frac{dy}{dx}$. 3 ⁴⁴ MI Some evidence of substituting $\theta = \frac{x}{4}$ or $\theta = 45^{\circ}$ into their $\frac{dy}{dx}$. 3 ⁴⁴ MI applies $m(N) = \frac{-1}{m(T)}$. Numerical value for $m(N)$ is required here. 4 ⁴⁵ MI applies $m(N) = \frac{-1}{m(T)}$. Numerical value for $m(N)$ is a numerical value, \circ or finds to sysolving 2 - (their m_x) ($x = 3$), where $m(N)$ is a numerical value, and $m_x = -\frac{1}{thcir m(T)}$ or $m_x = \frac{1}{thcir m(T)}$ or $m_y = -thcir m(T)$. Note This mark can be implied by subsequent working. 2 ⁴⁶ A1 $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only. (b) 1 ⁴⁴ MI Applying $\int y^3 dx$ as $y^3 \frac{dy}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral. Note Allow 1 ⁴⁴ M1 for $\int (\cos^3 \theta)^2 x$ "their 3see ² $\theta^+ d\theta$ or $\int 4(\cos^3 \theta)^3 x$ "their 3see ² $\theta^+ d\theta$ 1 ⁴⁷ A1 Correct expression $\left\{\pi \int y^2 dx\right\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta$ ($d\theta$ }) (Allow the omission of $d\theta$) Note IMPORTANT: The π can be recovered later, but as a correct statement only. 2 ⁴⁶ A1 $\left\{\int y^2 dx\right\} = \int 48\cos^2 \theta (d\theta)$. (Ignore $d\theta$). Note: 48 can be written as 24(2) for example. 2 ⁴⁶ M1 Applies $\cos 2\theta - 2\cos^2 \theta - 1$ to their integral. (Scen or implied) 3 ⁴⁶ M1 which is dependent on the 1 ⁴⁶ M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. This can be implied by $k\cos^2 \theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified. 4 ⁴⁶ M1 which is dependent on the 3 ⁴⁶ M1 mark and the 1 ⁴⁶ M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5 ⁴⁶ M1 Applies $V_{cos} = \frac{1}{3}\pi(2)^2$			Question 7 Notes
$ \begin{array}{c c} \mathbf{I}^{a} \mathbf{A1} & \operatorname{Correct} \frac{dy}{dx} \operatorname{i.e.} \frac{-8 \cos \theta \sin \theta}{3 \sec^{2} \theta} \mathrm{or} -\frac{8}{3} \cos^{2} \theta \sin \theta \mathrm{or} -\frac{4}{3} \sin 2\theta \cos^{2} \theta \text{ or any equivalent form.} \\ 2^{ad} \mathbf{M1} & \operatorname{Some} eridence \text{ of substituting } \theta = \frac{\pi}{4} \text{ or } \theta = 45^{\circ} \operatorname{into} \operatorname{their} \frac{dy}{dx} \\ \hline \mathbf{Note} & \operatorname{For} 3^{cd} \mathbf{M1} and 4^{th} \mathbf{M1}, \mathbf{m(T)} \text{ must be found by using } \frac{dy}{dx}. \\ 3^{cd} \mathbf{M1} & \text{applies } m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}. \operatorname{Numerical value for } m(\mathbf{N}) \text{ is required here.} \\ 4^{th} \mathbf{M1} & \text{Applies } y - 2 = (\operatorname{their} m_{y_{h}})(x - 3), \text{where } m(\mathbf{N}) \text{ is a numerical value,} \\ \text{and } m_{y} = -\frac{1}{m(\mathbf{T})} \text{or } m_{y} = \frac{1}{m(\mathbf{T})} \text{or } m_{y} = -\operatorname{their} m(\mathbf{N}) \text{ is a numerical value,} \\ \text{and } m_{y} = -\frac{1}{hcir} \mathrm{m(T)} \text{ or } m_{y} = \frac{1}{m(\mathbf{T})} \mathrm{or } m_{y} = -\operatorname{their} m(\mathbf{T}). \\ \hline \mathbf{Note} & \operatorname{This mark can be implied by subsequent working. \\ \hline 2^{ad} \mathbf{A1} x = \frac{5}{3} \text{ or } 1\frac{2}{3} \text{ or anvt 1.67 from a correct solution only.} \\ \hline 1^{a} \mathrm{M1} \text{Applying } \int y^{2} dx \text{ as } y^{2} \frac{dx}{d\theta} \text{ with their } \frac{dx}{d\theta^{2}}, \operatorname{Ignore} \pi \text{ or } \frac{1}{3}\pi \text{ outside integral.} \\ \hline \mathrm{Note} & \operatorname{Volus 1^{a} \mathrm{M1} \mathrm{If} \int (\cos^{2} \theta)^{5} x^{a} \mathrm{their} 3\sec^{2} \theta^{a} d\theta \text{ or } \int 4(\cos^{2} \theta)^{3} x^{a} \mathrm{their} 3\sec^{2} \theta^{a} d\theta \\ \hline 1^{a} \mathrm{A1} \operatorname{Correct} \mathrm{expression} \left\{ \pi \int y^{2} dx \right\} = \pi \int (4\cos^{2} \theta)^{2} 3\sec^{2} \theta^{2} d\theta^{2} (\mathrm{Allow the omission of } d\theta) \\ \operatorname{Note} \mathrm{IMPORTANT: The } \pi \mathrm{can be recovered later, but as a correct statement only. \\ \hline 2^{ad} \mathrm{A1} \begin{array}{l} \int y^{2} dx \right\} - \int 48\cos^{2} \theta (4\theta) (\mathrm{Ignore} d\theta), \mathrm{Note:} 48 \mathrm{can be written as 24(2) \mathrm{for example.} \\ \hline 2^{ad} \mathrm{A1} \begin{array}{l} \mathrm{Applies} \cos 2\theta - 2\cos^{2} \theta - 1 \mathrm{to} \mathrm{their} \mathrm{integral} 3\theta \Omega, \theta \neq 0, \mu = \mathrm{simplified} \mathrm{simplified} \\ \operatorname{Min } \mathrm{Applies} v_{cos}^{2} \theta \mathrm{give} \pm d^{2} \beta \mathrm{gin} 2\theta, \mu \neq 0, \mu = \mathrm{simplified} \\ \operatorname{Min } \mathrm{which} $	7. (a)	1 st M1	Applies their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$ or applies $\frac{dy}{d\theta}$ multiplied by their $\frac{d\theta}{dx}$
$\frac{2^{nd} \text{ MI}}{2^{nd} \text{ MI}} = \frac{2^{nd} \text{ or } \theta = 45 \text{ into their } \frac{dy}{dx}}{dx}$ Note For 3 nd M1 and 4 th M1, <i>m</i> (T) must be found by using $\frac{dy}{dx}$. 3 nd M1 applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. Numerical value for <i>m</i> (N) is required here. 4 th M1 • Applies $y = 2 = (\text{their } m_x)(x = 3)$, where m(N) is a numerical value, • or finds <i>c</i> by solving 2 = (their $m_x)3 + c$, where m(N) is a numerical value, and $m_y = -\frac{1}{\text{their m}(\mathbf{T})}$ or $m_y = \frac{1}{\text{their m}(\mathbf{T})}$ or $m_y = -\text{their m}(\mathbf{T})$. Note This mark can be implied by subsequent working. 2 nd A1 $x = \frac{5}{3} \text{ or } 1\frac{2}{3}$ or awrt 1.67 from a correct solution only. (b) 1 nd M1 Applying $\int y^2 dx$ as $y^2 \frac{dx}{d0}$ with their $\frac{dx}{d0}$, Ignore π or $\frac{1}{3}\pi$ outside integral. Note You can ignore the omission of an integral sign and/or $d\theta$ for the 1 nd M1. Note Allow 1 nd M1 for $\int \cos^2 \theta \right)^2 x$ "their $3\sec^2 \theta^n d\theta$ or $\int 4(\cos^2 \theta)^2 x$ "their $3\sec^2 \theta^n d\theta$ 1 nd A1 Correct expression $\{\pi \int y^2 dx\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta \{d\theta\}$ (Allow the omission of $d\theta$) Note IMPORTANT: The π can be recovered later, but as a correct statement only. 2 nd A1 $\{\int y^2 dx\} = -\int 48\cos^2 \theta \{d\theta\}$. (Ignore $d\theta$). Note: 48 can be written as 24(2) for example. 2 nd M1 Applies $\cos 2\theta - 2\cos^2 \theta - 1$ to their integral. (Seen or implified) 3 nd AM1* which is dependent on the 1 nd M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \pm 0$, $\beta \pm 0$, un-simplified or simplified. 3 nd A1 which is dependent on the 3 nd M1 mark and the 1 nd M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. 4 th M1 applies $v_{mw} = \frac{1}{3}\pi(2)^2(3 - \text{their part}(\alpha) answer)$. Note Also allow the 5 th M1 for $V_{mw} = \pi \int_{absc}^{2} \frac{1}{2}x - \frac{2}{2}^{1} \{dx\}$, which includes the correct limits. 4 th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{9}{2}\pi + 6\pi^2$ Note Also allow the 5 th M1 for $V_{aw} = \pi \int_{absc}^{2} \frac{1}{2}x - \frac{2}{2}^{1} \{dx\}$, which includes the correct limits.		SC	Award Special Case 1 st M1 if both $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ are both correct.
NoteFor 3^{cd} M1 and 4^{dt} M1, m(T) must be found by using $\frac{dv}{dx}$. 3^{cd} M1applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. Numerical value for $m(\mathbf{N})$ is required here. 4^{dt} M1• Applies $y - 2 = (\text{their } m_v)(x - 3)$, where m(N) is a numerical value,and $m_v = -\frac{1}{1 \text{ their } m(\mathbf{T})}$ or $m_v = \frac{1}{1 \text{ their } m(\mathbf{T})}$ or $m_v = -\text{ their } m(\mathbf{N})$ is a numerical value,and $m_v = -\frac{1}{1 \text{ their } m(\mathbf{T})}$ or $m_v = \frac{1}{1 \text{ their } m(\mathbf{T})}$ or $m_v = -\text{ their } m(\mathbf{T})$.NoteThis mark can be implied by subsequent working. 2^{ad} A1 $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only.(b)1 ^{ad} M1Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral.You can ignore the omission of an integral sign and/or $d\theta$ for the 1 st M1.NoteAllow 1 st M1 for $\int (\cos^2 \theta)^2 \times$ "their $3\sec^2 \theta$ " $d\theta$ or $\int 4(\cos^2 \theta)^2 \times$ "their $3\sec^2 \theta$ " $d\theta$ 1 st A1Correct expression $\{\pi \int y^2 dx\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta \ d\theta \}$ (Allow the omission of $d\theta$)NoteIMPORTANT: The π can be recovered later, but as a correct statement only. 2^{ad} A1 $\{\int y^2 dx\} = \int 48\cos^2 \theta \ d\theta \ de$). (Ignore $d\theta$). Note: 48 can be written as 24(2) for example. 2^{ad} A1Subsequent on the 1 ^{ad} M mark.Integrating $\cos^2 \theta$ to give $\pm a\theta \pm \beta \sin 2\theta$, $\alpha \pm 0$, $\beta \pm 0$, un-simplified or simplified. 3^{ad} dM1*which is dependent on the 1 ^{ad} M mark.Integrating $\cos^2 \theta$ to give $\pm d \pm \beta \sin 2\theta$, $\alpha = 0$, $\beta \pm 0$, un-simplified or simplified. 3^{ad} dM1*which is dependent on the 3 ^{ad} M1 mark and the 1 ^{ad} M1 mark.Integrat		1 st A1	Correct $\frac{dy}{dx}$ i.e. $\frac{-8\cos\theta\sin\theta}{3\sec^2\theta}$ or $-\frac{8}{3}\cos^3\theta\sin\theta$ or $-\frac{4}{3}\sin2\theta\cos^2\theta$ or any equivalent form.
$3^{rd} MI = 3^{rd} MI = \frac{-1}{m(T)}. Numerical value for m(N) is required here.4^{th} MI = Applies m(N) = \frac{-1}{m(T)}. Numerical value for m(N) is a numerical value,and m_x = -\frac{1}{their m(T)} or m_y = 1 (their m_x)3 + c, where m(N) is a numerical value,and m_x = -\frac{1}{their m(T)} or m_y = \frac{1}{their m(T)} or m_y = -their m(T).Note This mark can be implied by subsequent working.2^{rd} AI = x = \frac{5}{3} \text{ or } 1\frac{2}{3} \text{ or awrt 1.67 from a correct solution only.} (b) 1^{rd} MI = Applying \int y^2 dx as y^2 \frac{dx}{d\theta} with their \frac{dx}{d\theta}. Ignore \pi or \frac{1}{3}\pi outside integral.Note You can ignore the omission of an integral sign and/or d\theta for the 1rd M1.Note Allow 1rd M1 for \int (\cos^2 \theta)^2 \times \text{"their 3sec}^2 \theta + d\theta or \int 4(\cos^2 \theta)^2 \times \text{"their 3sec}^2 \theta + d\theta1^{rd} AI = Correct expression \{\pi \int y^2 dx\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta + (d\theta) (Allow the omission of d\theta)Note IMPORTANT: The \pi can be recovered later, but as a correct statement only.2^{rd} AI = \{\int y^2 dx\} = \int 48\cos^2 \theta + (d\theta). (Ignore d\theta). Note: 48 can be written as 24(2) for example.2^{rd} MI = Applies \cos 2\theta = 2\cos^2 \theta - 1 to their integral. (Seen or implied.)3^{rd} dM1^* which is dependent on the 1^{rd} MI mark.Integrating \cos^2 \theta to give \pm dd \pm \beta \sin 2\theta, \alpha \neq 0, \beta \neq 0, un-simplified or simplified.This can be implied by k\cos^2 \theta giving \frac{k}{2} \theta + \frac{k}{4}\sin 2\theta, un-simplified or simplified.This can be implied by k\cos^2 \theta giving \frac{k}{2} \theta + \frac{k}{4}\sin 2\theta, un-simplified or simplified.4^{rh} MI = Applies V_{cose} = \frac{1}{3}\pi(2)^2(3 - their part(a) answer).Note Also allow the 5rh M1 for V_{cose} = \pi \int_{nost}^{s} \frac{3}{2}(\frac{3}{2}x - \frac{5}{2})^2 \{dx\}, which includes the correct limits.4^{rh} AI = \frac{92}{9}\pi + 6\pi^2 or 10\frac{2}{9}\pi + 6\pi^2.Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.$		2 nd M1	Some evidence of substituting $\theta = \frac{\pi}{4}$ or $\theta = 45^{\circ}$ into their $\frac{dy}{dx}$
(b) 4 th M1 • Applies $y - 2 = (\text{their } m_x)(x - 3)$, where m(N) is a numerical value, • or finds c by solving 2 = (their $m_x)3 + c$, where m(N) is a numerical value, and $m_x = -\frac{1}{\text{their m(T)}}$ or $m_x = \frac{1}{\text{their m(T)}}$ or $m_x = -\text{their m(T)}$. Note This mark can be implied by subsequent working. 2 nd A1 $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only. 1 st M1 Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral. Note You can ignore the omission of an integral sign and/or $d\theta$ for the 1 st M1. Note Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times \text{"their } 3\sec^2 \theta \cap d\theta$ or $\int 4(\cos^2 \theta)^2 \times \text{"their } 3\sec^2 \theta \cap d\theta$ 1 st A1 Correct expression $\{\pi \int y^2 dx\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta \{d\theta\}$ (Allow the omission of $d\theta$) Note MPORTANT: The π can be recovered later, but as a correct statement only. 2 nd A1 $\{\int y^2 dx\} = \int 48\cos^2 \theta (d\theta)$. (Ignore $d\theta$). Note: 48 can be written as 24(2) for example. 2 nd M1 Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied.) 3 rd M1 th is dependent on the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\pm d\theta \pm \beta \sin 2\theta$, $\alpha \pm 0$, $\beta \pm 0$, un-simplified or simplified. This can be implied by $k\cos^3 \theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified. 4 th M1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. This can be implied by $k\cos^3 \theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified. Mich is dependent on the 3 rd M1 mark and the 1 st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5 th M1 Applies $V_{cone} = \frac{1}{3}\pi(2)^2(3 - their part(a) answer)$. Note Also allow the 5 th M1 for $V_{cone} = \pi \int_{datin}^3 (\frac{3}{2}x - \frac{5}{2})^2 \{dx\}$, which includes the correct limits. 4 th A1 $\frac{92}{g}\pi + 6\pi^2$ or $10\frac{2}{g}\pi + 6\pi^2$ Note Note		Note	For 3 rd M1 and 4 th M1, $m(\mathbf{T})$ must be found by using $\frac{dy}{dx}$.
• or finds c by solving 2 = (their m_x)3 + c, where m(N) is a numerical value, and $m_y = -\frac{1}{\text{their m(T)}}$ or $m_x = \frac{1}{\text{their m(T)}}$ or $m_x = -\text{their m(T)}$. Note This mark can be implied by subsequent working. 2 nd A1 $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only. 1 st M1 Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral. Note You can ignore the omission of an integral sign and/or $d\theta$ for the 1 st M1. Note Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times "$ their $3\sec^2 \theta \cap d\theta$ or $\int 4(\cos^2 \theta)^2 \times "$ their $3\sec^2 \theta \cap d\theta$ 1 st A1 Correct expression $\{\pi \int y^2 dx\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta d\theta \}$ (Allow the omission of $d\theta$) Note IMPORTANT: The π can be recovered later, but as a correct statement only. 2 nd A1 $\{\int y^2 dx\} = \int 48\cos^2 \theta d\theta \}$. (Ignore $d\theta$). Note: 48 can be written as 24(2) for example. 2 nd M1 Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied.) 3 rd dM1 st which is dependent on the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified. Mich is dependent on the 3 rd M1 mark and the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. This can be implied by $k\cos^2 \theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified. Mich is dependent on the 3 rd M1 mark and the 1 st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5 ^{sh} M1 Applies $V_{come} = \frac{1}{3}\pi (2)^2 (3 - their part (a) answer)$. Note Also allow the 5 ^{sh} M1 for $V_{come} = \pi \int_{best}^3 (\frac{3}{2}x - \frac{5}{2})^2 \{dx\}$, which includes the correct limits. $4^{th} A1 = \frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.		3 rd M1	applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. Numerical value for $m(\mathbf{N})$ is required here.
$\begin{array}{ c c c c c c } & \text{and } m_{x} = -\frac{1}{\text{their } m(\mathbf{T})} \text{ or } m_{x} = \frac{1}{\text{their } m(\mathbf{T})} \text{ or } m_{x} = -\text{their } m(\mathbf{T}). \\ \hline \mathbf{Note} & \text{This mark can be implied by subsequent working.} \\ \hline 2^{\text{ref}} \mathbf{A1} & x = \frac{5}{3} \text{ or } 1\frac{2}{3} \text{ or awrt 1.67 from a correct solution only.} \\ \hline 2^{\text{ref}} \mathbf{A1} & x = \frac{5}{3} \text{ or } 1\frac{2}{3} \text{ or awrt 1.67 from a correct solution only.} \\ \hline 1^{\text{ef}} \mathbf{M1} & \text{Applying } \int y^{2} dx \text{ as } y^{2} \frac{dx}{d\theta} \text{ with their } \frac{dx}{d\theta}. \text{ Ignore } \pi \text{ or } \frac{1}{3}\pi \text{ outside integral.} \\ \mathbf{Note} & \text{You can ignore the omission of an integral sign and/or } d\theta \text{ for the 1}^{\text{ef}} \mathbf{M1}. \\ \mathbf{Note} & \text{Allow 1}^{\text{ef}} \mathbf{M1} \text{ for } \int (\cos^{2}\theta)^{2} \times \text{"their } 3\sec^{2}\theta \text{"d}\theta \text{ or } \int 4(\cos^{2}\theta)^{2} \times \text{"their } 3\sec^{2}\theta \text{"d}\theta \\ 1^{\text{ef}} \mathbf{A1} & \text{Correct expression } \left\{\pi \int y^{2} dx\right\} = \pi \int (4\cos^{2}\theta)^{2} 3\sec^{2}\theta \left\{d\theta\right\} \text{ (Allow the omission of } d\theta) \\ \mathbf{Note} & \mathbf{IMPORTANT: The } \pi \text{ can be recovered later, but as a correct statement only.} \\ 2^{\text{rd}} \mathbf{A1} & \left\{\int y^{2} dx\right\} = \int 48\cos^{2}\theta \left\{d\theta\right\}. \text{ (Ignore } d\theta). \text{ Note: } 48 \text{ can be written as } 24(2) \text{ for example.} \\ 2^{\text{rd}} \mathbf{M1} & \text{Applies } \cos 2\theta = 2\cos^{2}\theta - 1 \text{ to their integral.} (Seen or implied.) \\ 3^{\text{rd}} \mathbf{M1} & \text{ which is dependent on the } 3^{\text{rd}} \mathbf{M1} \text{ mark.} \\ \text{Integrating } \cos^{2}\theta \text{ to give } \pm 2\theta + f\sin 2\theta, \text{ un-simplified or simplified.} \\ 3^{\text{rd}} \mathbf{A1} & \text{ which is dependent on the } 3^{\text{rd}} \mathbf{M1} \text{ mark.} \text{ and the } 1^{\text{s}} \mathbf{M1} \text{ mark.} \\ \text{Integrating } \cos^{2}\theta \text{ to give } \frac{1}{2}\theta + \frac{1}{4}\sin 2\theta, \text{ un-simplified or simplified.} \\ 4^{\text{th}} \mathbf{M1} & \text{which is dependent on the } 3^{\text{rd}} \mathbf{M1} \text{ mark.} \\ \text{ Some evidence of applying limits of } \frac{\pi}{4} \text{ and } 0 (0 \text{ can be implied) to an integrated function in } \theta \\ 5^{\text{th}} \mathbf{M1} & \text{Applies } V_{come} = \frac{1}{3}\pi(2)^{2}(3 - \text{their } \operatorname{prt}(a) \text{ answer}). \\ \mathbf{Note} & \text{ Also allow the } 5^{\text{th}} \mathbf{M1} \text{ for } V_{come} = \pi \int_{date}^{2} \left(\frac{1}$		4 th M1	• Applies $y - 2 = (\text{their } m_N)(x - 3)$, where m(N) is a numerical value,
NoteThis mark can be implied by subsequent working.2 nd A1 $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only.1 nd M1Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral.NoteYou can ignore the omission of an integral sign and/or $d\theta$ for the 1 nd M1.NoteAllow 1 nd M1 for $\int (\cos^2 \theta)^2 \times "their 3\sec^2 \theta" d\theta$ or $\int 4(\cos^2 \theta)^2 \times "their 3\sec^2 \theta" d\theta$ 1 nd A1Correct expression $\{\pi \int y^2 dx\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta \{d\theta\}$ (Allow the omission of $d\theta$)NoteIMPORTANT: The π can be recovered later, but as a correct statement only.2 nd A1 $\{\int y^2 dx\} = \int 48\cos^2 \theta \{d\theta\}$. (Ignore $d\theta$). Note: 48 can be written as 24(2) for example.2 nd M1Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Scen or implied.)3 rd dM1*which is dependent on the 1 nd M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified.3 rd A1which is dependent on the 3 rd M1 mark and the 1 ^{sd} M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified.4 th dM1which is dependent on the 3 rd M1 mark and the 1 ^{sd} M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5 th M1Applies $V_{come} = \frac{1}{3}\pi(2)^2(3 - their part(a) answer)$. NoteAlso allow the 5 th M1 for $V_{come} = \pi \int_{host}^3 (\frac{3}{2}x - \frac{5}{2})^2 \{dx\}$, which includes the correct limits.4 th A1 $\frac{92}{2}\pi + 6\pi^2$ or $10\frac{2}{2}\pi + 6\pi^2$ NoteA decimal answer of 91.3168464 (without a correct exact answer) is A0.			• or <i>finds c</i> by solving $2 = (\text{their } m_N)3 + c$, where $m(\mathbf{N})$ is a numerical value,
(b) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			and $m_N = -\frac{1}{\text{their } m(\mathbf{T})}$ or $m_N = \frac{1}{\text{their } m(\mathbf{T})}$ or $m_N = -\text{their } m(\mathbf{T})$.
(b) 1st M1 Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral. Note You can ignore the omission of an integral sign and/or $d\theta$ for the 1 st M1. Note Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times$ "their $3\sec^2 \theta$ " $d\theta$ or $\int 4(\cos^2 \theta)^2 \times$ "their $3\sec^2 \theta$ " $d\theta$ 1 st A1 Correct expression $\{\pi \int y^2 dx\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta \{d\theta\}$ (Allow the omission of $d\theta$) Note IMPORTANT: The π can be recovered later, but as a correct statement only. 2 nd A1 $\{\int y^2 dx\} = \int 48\cos^2 \theta \{d\theta\}$. (Ignore $d\theta$). Note: 48 can be written as 24(2) for example. 2 nd M1 Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied.) 3 rd M11* which is dependent on the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified. 3 rd A1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. 4 th dM1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5 th M1 Applies $V_{cose} = \frac{1}{3}\pi(2)^2(3 - \text{their part }(a)$ answer). Note Also allow the 5 th M1 for $V_{cose} = \pi \int_{netres}^3 (\frac{3}{2}x - \frac{5}{2})^2 \{dx\}$, which includes the correct limits. 4 th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.		Note	This mark can be implied by subsequent working.
Note You can ignore the omission of an integral sign and/or $d\theta$ for the 1 st M1. Note Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times "$ their $3\sec^2 \theta \cap d\theta$ or $\int 4(\cos^2 \theta)^2 \times "$ their $3\sec^2 \theta \cap d\theta$ 1 st A1 Correct expression $\{\pi \int y^2 dx\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta \{d\theta\}$ (Allow the omission of $d\theta$) Note IMPORTANT: The π can be recovered later, but as a correct statement only. 2 nd A1 $\{\int y^2 dx\} = \int 48\cos^2 \theta \{d\theta\}$. (Ignore $d\theta$). Note: 48 can be written as 24(2) for example. 2 nd M1 Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied.) 3 rd dM1* which is dependent on the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \neq \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified. 3 rd A1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. 4 th dM1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5 th M1 Applies $V_{come} = \frac{1}{3}\pi (2)^2 (3 - their part (a) answer)$. Note Also allow the 5 th M1 for $V_{come} = \pi \int_{heir}^3 \frac{(3}{2}x - \frac{5}{2})^2 \{dx\}$, which includes the correct limits. 4 th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.		2 nd A1	
Note Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times$ "their $3\sec^2 \theta$ " $d\theta$ or $\int 4(\cos^2 \theta)^2 \times$ "their $3\sec^2 \theta$ " $d\theta$ 1 st A1 Correct expression $\left\{\pi \int y^2 dx\right\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta \{d\theta\}$ (Allow the omission of $d\theta$) Note IMPORTANT: The π can be recovered later, but as a correct statement only. 2 nd A1 $\left\{\int y^2 dx\right\} = \int 48\cos^2 \theta \{d\theta\}$. (Ignore $d\theta$). Note: 48 can be written as 24(2) for example. 2 nd M1 Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied.) 3 rd dM1* which is dependent on the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified. 3 rd A1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. 4 th dM1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5 th M1 Applies $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 (3 - \text{their part}(a) \text{ answer})$. Note Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{duct} \frac{\pi}{3}}^{3} (\frac{3}{2}x - \frac{5}{2})^2 \{dx\}$, which includes the correct limits. 4 th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.	(b)		
1 ^{at} A1 Correct expression $\left\{\pi \int y^2 dx\right\} = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta \{d\theta\}$ (Allow the omission of $d\theta$) Note IMPORTANT: The π can be recovered later, but as a correct statement only . 2 ^{ad} A1 $\left\{\int y^2 dx\right\} = \int 48\cos^2 \theta \{d\theta\}$. (Ignore $d\theta$). Note: 48 can be written as 24(2) for example. 2 ^{ad} M1 Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied .) 3 rd M1 ^{at} which is dependent on the 1st M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified. 3 rd A1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. 4 th M1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5 th M1 Applies $V_{\text{come}} = \frac{1}{3}\pi (2)^2 (3 - \text{their part}(a) \text{ answer})$. Note Also allow the 5 th M1 for $V_{\text{come}} = \pi \int_{detin}^{3} \frac{(\frac{3}{2}x - \frac{5}{2})^2}{4x} \{dx\}$, which includes the correct limits. 4 th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.		Note	
NoteIMPORTANT: The π can be recovered later, but as a correct statement only. $2^{nd} A1$ $\left\{ \int y^2 dx \right\} = \int 48 \cos^2 \theta \{ d\theta \}$. (Ignore dθ). Note: 48 can be written as 24(2) for example. $2^{nd} M1$ Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied.) $3^{rd} dM1^*$ which is dependent on the 1st M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified. $3^{rd} A1$ which is dependent on the $3^{rd} M1$ mark and the 1st M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. $4^{th} dM1$ which is dependent on the $3^{rd} M1$ mark and the 1st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ $5^{th} M1$ Applies $V_{cone} = \frac{1}{3}\pi(2)^2(3 - \text{their part}(a) \text{ answer})$.NoteAlso allow the 5 th M1 for $V_{cone} = \pi \int_{their \frac{4}{3}}^{3} (\frac{3}{2}x - \frac{5}{2})^2 \{ dx \}$, which includes the correct limits. $4^{th} A1$ $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ NoteA decimal answer of 91.33168464 (without a correct exact answer) is A0.		Note	Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times$ "their 3sec ² θ " d θ or $\int 4(\cos^2 \theta)^2 \times$ "their 3sec ² θ " d θ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 st A1	Correct expression $\left\{\pi \int y^2 dx\right\} = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$ (Allow the omission of $d\theta$)
2^{nd} M1Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied.) 3^{rd} M1*which is dependent on the 1^{st} M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified. 3^{rd} A1which is dependent on the 3^{rd} M1 mark and the 1^{st} M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. 3^{rd} A1which is dependent on the 3^{rd} M1 mark and the 1^{st} M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. This can be implied by $k\cos^2 \theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified. Which is dependent on the 3^{rd} M1 mark and the 1^{st} M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5^{th} M1Applies $V_{cone} = \frac{1}{3}\pi (2)^2 (3 - \text{their part}(a) \text{ answer})$. NoteNoteAlso allow the 5^{th} M1 for $V_{cone} = \pi \int_{\frac{3}{2}t}^{3} \left(\frac{3}{2}x - \frac{5}{2}\right)^2 \{dx\}$, which includes the correct limits. 4^{th} A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ NoteA decimal answer of 91.33168464 (without a correct exact answer) is A0.		Note	
3^{rd} dM1*which is dependent on the 1st M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified. 3^{rd} A1which is dependent on the 3^{rd} M1 mark and the 1st M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. This can be implied by $k \cos^2 \theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified. Which is dependent on the 3^{rd} M1 mark and the 1st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5^{th} M1Applies $V_{cone} = \frac{1}{3}\pi(2)^2 (3$ - their part (a) answer).NoteAlso allow the 5 th M1 for $V_{cone} = \pi \int_{their\frac{5}{3}}^{3} (\frac{3}{2}x - \frac{5}{2})^2 \{dx\}$, which includes the correct limits. 4^{th} A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ NoteA decimal answer of 91.33168464 (without a correct exact answer) is A0.			
Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified. 3 rd A1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. This can be implied by $k \cos^2 \theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified. 4 th dM1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5 th M1 Applies $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 (3 - \text{their part} (a) \text{ answer})$. Note Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their}}^{3} \left(\frac{3}{2}x - \frac{5}{2}\right)^2 \{dx\}$, which includes the correct limits. 4 th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.			
3rd A1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. This can be implied by $k \cos^2 \theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified. 4th dM1 which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5th M1 Applies $V_{\text{cone}} = \frac{1}{3}\pi(2)^2 (3 - \text{their part}(a) \text{ answer})$. Note Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their} \frac{5}{3}}^{3} \left(\frac{3}{2}x - \frac{5}{2}\right)^2 \{dx\}$, which includes the correct limits. 4th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.		$3^{ru} dM1^*$	•
Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified. This can be implied by $k\cos^2 \theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified. Which is dependent on the 3 rd M1 mark and the 1 st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5 th M1 Applies $V_{\text{cone}} = \frac{1}{3}\pi(2)^2 (3 - \text{their part}(a) \text{ answer})$. Note Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their}\frac{5}{3}}^{3} (\frac{3}{2}x - \frac{5}{2})^2 \{dx\}$, which includes the correct limits. 4 th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.		3 rd A1	
4th dM1which is dependent on the 3rd M1 mark and the 1st M1 mark. Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5th M1Applies $V_{\text{cone}} = \frac{1}{3}\pi(2)^2 (3 - \text{their part}(a) \text{ answer})$.NoteAlso allow the 5th M1 for $V_{\text{cone}} = \pi \int_{\text{their}}^{3} \left(\frac{3}{2}x - \frac{5}{2}\right)^2 \{dx\}$, which includes the correct limits.4th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ NoteA decimal answer of 91.33168464 (without a correct exact answer) is A0.			-
Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ 5th M1 Applies $V_{\text{cone}} = \frac{1}{3}\pi(2)^2 (3 - \text{their part}(a) \text{ answer})$. Note Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their}}^3 \left(\frac{3}{2}x - \frac{5}{2}\right)^2 \{dx\}$, which includes the correct limits. 4th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.			This can be implied by $k\cos^2\theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified.
5 th M1 Applies $V_{\text{cone}} = \frac{1}{3}\pi(2)^2 (3 - \text{their part}(a) \text{ answer})$. Note Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their}}^3 \frac{3}{2} x - \frac{5}{2} \int_{-1}^2 \{dx\}$, which includes the correct limits. 4 th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.		4 th dM1	which is dependent on the 3^{rd} M1 mark and the 1^{st} M1 mark.
Note Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their}}^{3} \left(\frac{3}{2}x - \frac{5}{2}\right)^{2} \{dx\}$, which includes the correct limits. 4 th A1 $\frac{92}{9}\pi + 6\pi^{2}$ or $10\frac{2}{9}\pi + 6\pi^{2}$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.			Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ
4 th A1 $\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$ Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.		5 th M1	5
Note A decimal answer of 91.33168464 (without a correct exact answer) is A0.		Note	Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their}}^{3} \left(\frac{3}{2}x - \frac{5}{2}\right)^2 \{dx\}$, which includes the correct limits.
		Note Note	A decimal answer of 91.33168464 (without a correct exact answer) is A0. The π in the volume formula is only needed for the 1 st A1 mark and the final accuracy mark.

7.		Working with a Cartesian Equation
		A cartesian equation for C is $y = \frac{36}{r^2 + 9}$
		$\frac{1}{x^2} + 9$
(a)	1 st M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda x \left(\pm \alpha x^2 \pm \beta\right)^{-2} \text{ or } \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\pm \lambda x}{\left(\pm \alpha x^2 \pm \beta\right)^2}$
		$\frac{dy}{dx} = -36(x^2+9)^{-2}(2x) \text{or} \frac{dy}{dx} = \frac{-72x}{(x^2+9)^2} \text{un-simplified or simplified.}$
	$2^{nd} dM1$	Dependent on the 1 st M1 mark if a candidate uses this method
		For substituting $x = 3$ into their $\frac{dy}{dx}$
		i.e. at $P(3, 2)$, $\frac{dy}{dx} = \frac{-72(3)}{(3^2 + 9)^2} \left\{ = -\frac{2}{3} \right\}$
		From this point onwards the original scheme can be applied.
(b)	1 st M1	For $\int \left(\frac{\pm \lambda}{\pm \alpha x^2 \pm \beta}\right)^2 \{dx\}$ (π not required for this mark)
	A1	For $\pi \int \left(\frac{36}{x^2+9}\right)^2 \{dx\}$ (π required for this mark)
		To integrate, a substitution of $x = 3\tan\theta$ is required which will lead to $\int 48\cos^2\theta d\theta$ and so
		from this point onwards the original scheme can be applied.
		Another cartesian equation for <i>C</i> is $x^2 = \frac{36}{y} - 9$
(a)	1 st M1	$\pm \alpha x = \pm \frac{\beta}{y^2} \frac{dy}{dx}$ or $\pm \alpha x \frac{dx}{dy} = \pm \frac{\beta}{y^2}$
	1 st A1	$2x = -\frac{36}{y^2}\frac{dy}{dx}$ or $2x\frac{dx}{dy} = -\frac{36}{y^2}$
	2 nd dM1	Dependent on the 1 st M1 mark if a candidate uses this method
		For substituting $x = 3$ to find $\frac{dy}{dx}$
		i.e. at $P(3, 2), 2(3) = -\frac{36}{4} \frac{dy}{dx} \Rightarrow \frac{dy}{dx} =$
		From this point onwards the original scheme can be applied.

Question Number	Scheme		Mark	S
8.	$\overrightarrow{OA} = -2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$, $\overrightarrow{OB} = -\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ & $\overrightarrow{OP} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$			
(a)	$\overrightarrow{AB} = \pm \left((-\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}) - (-2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) \right); = \mathbf{i} - \mathbf{j} + \mathbf{k}$		M1; A1	[4]
(b)	$\left\{l_1: \mathbf{r}\right\} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \text{or} \left\{\mathbf{r}\right\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$		B1ft	[2]
(c)	$\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} - \begin{pmatrix} 0\\2\\3 \end{pmatrix} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$		M1	[1]
	$\begin{pmatrix} 1 \\ -1 \end{pmatrix} \bullet \begin{pmatrix} -1 \\ 1 \end{pmatrix}$	Applies dot product formula between		
	$\{\cos \theta =\} \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\left \overrightarrow{AB}\right \cdot \left \overrightarrow{PB}\right } = \frac{\begin{pmatrix}1\\-1\\1\\1\end{pmatrix} \bullet \begin{pmatrix}-1\\1\\5\end{pmatrix}}{\sqrt{(1)^2 + (-1)^2 + (1)^2} \cdot \sqrt{(-1)^2 + (1)^2}}$	their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ $\overrightarrow{F} + (5)^2$ and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$.	M1	
	$\{\cos\theta\} = \frac{-1-1+5}{\sqrt{3}+\sqrt{27}} = \frac{3}{9} = \frac{1}{3}$	Correct proof	A1 cso	
	$\sqrt{3}.\sqrt{27}$ 9 3	1		[3]
		$\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$, $\mathbf{p} \neq 0$, $\mathbf{d} \neq 0$ with		[2]
(d)	$\{l_2: \mathbf{r} = \} \begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix} $ either \mathbf{p}	$= 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ or $\mathbf{d} = \text{their } \overrightarrow{AB}$, or a	M1	
	$\begin{pmatrix} r_2 \\ 3 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} \mu \\ 1 \end{pmatrix}$	multiple of their AB.		
		Correct vector equation.	A1 ft	[2]
	(0) (1) (1) (1) (0) (1)	Either \overrightarrow{OP} + their \overrightarrow{AB}	M1	
(e)	$\overrightarrow{OC} = \begin{pmatrix} 0\\2\\3 \end{pmatrix} + \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \text{or} \overrightarrow{OD} = \begin{pmatrix} 0\\2\\3 \end{pmatrix} - \begin{pmatrix} 1\\-1\\1 \end{pmatrix}:$	or OP – their AB At least one set of coordinates are		
	$\{C(1,1,4), D(-1,3,2)\}$	confect.	A1 ft	
		Both sets of coordinates are correct.	A1 ft	[3]
(f) Way 1	$\frac{h}{\sqrt{(-1)^2 + (1)^2 + (5)^2}} = \sin \theta$	$\frac{h}{\text{their }\left \overrightarrow{PB}\right } = \sin\theta$	M1	
	$h = \sqrt{27} \sin(70.5) \left\{ = \sqrt{27} \frac{\sqrt{8}}{3} = 2\sqrt{6} = \text{awrt } 4.9 \right\}$	$\sqrt{27} \sin(70.5)$ or $\sqrt{27} \cdot \frac{\sqrt{8}}{3}$	A1 oe	
		or $2\sqrt{6}$ or awrt 4.9 or equivalent 1(1+1)(1+1)=(1+1)(1+1)	11.61	
	Area $ABCD = \frac{1}{2} 2\sqrt{6} \left(\sqrt{3} + 2\sqrt{3}\right)$	$\frac{1}{2}$ (their <i>h</i>)(their <i>AB</i> + their <i>CD</i>)	dM1	
	$\left\{=\frac{1}{2}2\sqrt{6}\left(3\sqrt{3}\right)=3\sqrt{18}\right\}=\underline{9\sqrt{2}}$	$9\sqrt{2}$	A1 cao	
				[4] 15



		Question 8 Notes		
8. (a)	M1	Finding the difference (either way) between \overrightarrow{OB} and \overrightarrow{OA} .		
		If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the differ	rence.	
		$\mathbf{i} - \mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ or $(1, -1, 1)$ or benefit of the doubt -1 1		
	A1	$\mathbf{i} - \mathbf{j} + \mathbf{k}$ or $ -1 $ or $(1, -1, 1)$ or benefit of the doubt -1		
		(-2) (1) (-1) (1)		
(b)	B1ft	$\left\{\mathbf{r}\right\} = \begin{pmatrix} -2\\4\\7\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix} \text{ or } \left\{\mathbf{r}\right\} = \begin{pmatrix} -1\\3\\8\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1\\1 \end{pmatrix}, \text{ with } \overrightarrow{AB} \text{ or } \overrightarrow{BA} \text{ correctly followed thr}$	ough from (a)	ι).
			0	,
	Note	$\mathbf{r} = $ is not needed.		
(c)	M1	An attempt to find either the vector \overrightarrow{PB} or \overrightarrow{BP} .		
(0)	1011	If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the differ	rence.	
	M1	Applies dot product formula between their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$.		
	1411			
	A1	Obtains $\{\cos\theta\} = \frac{1}{3}$ by correct solution only.		
	Note	If candidate starts by applying $\frac{AB \bullet PB}{ \overrightarrow{AB} , \overrightarrow{PB} }$ correctly (without reference to $\cos\theta =$)		
		they can gain both 2 nd M1 and A1 mark.		
	Note	Award the final A1 mark if candidate achieves $\{\cos \theta\} = \frac{1}{3}$ by either taking the dot produce	ct between	
		5		
		$\begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$	d incorrectly	
		(i) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$ or (ii) $\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$. Ignore if any of these vectors are labelled	a meonechy.	
	Nata			
	Note	Award final A0, cso for those candidates who take the dot product between $\begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix} \begin{pmatrix} -1 \\ -1 \end{pmatrix}$		
		$\begin{bmatrix} 1 & 1 & -1 & -1 \\ (iii) & 1 & and & 1 & ar (iv) & 1 & and & 1 \end{bmatrix}$		
		$ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} and \begin{bmatrix} 1 \\ -1 \\ -5 \end{bmatrix} or (iv) \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix} and \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix} $		
		(1) (-3) (-1) (3)		
		They will usually find $\{\cos\theta\} = -\frac{1}{3}$ or may fudge $\{\cos\theta\} = \frac{1}{3}$.		
		If these candidates give a convincing detailed explanation which must include reference to	the direction	n
		of their vectors then this can be given A1 cso		
(c)	Alterr	native Method 1: The Cosine Rule	1	
		\overrightarrow{OR} \overrightarrow{OR} $= \begin{pmatrix} -1 \\ 3 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ or $\overrightarrow{RR} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Mark in the same way		
	PB =	$\overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ Mark in the same way as the main scheme.	M1	
		$\overrightarrow{PB} = \sqrt{27}$, $\overrightarrow{AB} = \sqrt{3}$ and $\overrightarrow{PA} = \sqrt{24}$		
			M1 oe	
	(¹ ²⁴)	$f = (\sqrt{27}) + (\sqrt{3}) - 2(\sqrt{27})(\sqrt{3})\cos\theta$ the correct way round		
	$\cos\theta$	$\int_{1}^{2} = (\sqrt{27})^{2} + (\sqrt{3})^{2} - 2(\sqrt{27})(\sqrt{3})\cos\theta$ Applies the cosine rule the correct way round $= \frac{27 + 3 - 24}{18} = \frac{1}{3}$ Correct proof	A1 cso	
		18 3	г.	[2]
	I		L L	[3]

8. (c)	Alternative Method 2: Right-Angled Trigonometry		
	$\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} - \begin{pmatrix} 0\\2\\3 \end{pmatrix} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$ Mark in the same way as the main scheme. M1		
	Either $(\sqrt{24})^2 + (\sqrt{3})^2 = (\sqrt{27})^2$ or $\overrightarrow{AB} \bullet \overrightarrow{PA} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix} = -2 - 2 + 4 = 0$ Confirms $\triangle PAB$ is right-angled M1		
	So, $\left\{\cos\theta = \frac{AB}{PB} \Rightarrow \right\} \cos\theta = \frac{\sqrt{3}}{\sqrt{27}} = \frac{1}{3}$ Correct proof A1 cso		
(d)	M1	Writing down a line in the form $\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$ with either $\mathbf{a} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$ or $\mathbf{d} = \text{their } \overrightarrow{AB} \ \mathbf{d} = \text{their } \overrightarrow{AB}$,	
		or a multiple of their \overrightarrow{AB} found in part (a).	
	A1ft	Writing $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ or $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \mathbf{d}$, where \mathbf{d} = their \overline{AB} or a multiple of their \overline{AB} found in part (a).	
	Note	$\mathbf{r} = $ is not needed.	
	Note	Using the same scalar parameter as in part (b) is fine for A1.	
(e)	M1 Note A1ft A1ft	Either \overrightarrow{OP} + their \overrightarrow{AB} or \overrightarrow{OP} - their \overrightarrow{AB} . This can be implied at least two out of three correct components for either their <i>C</i> or their <i>D</i> . At least one set of coordinates are correct. Ignore labelling of <i>C</i> , <i>D</i> Both sets of coordinates are correct. Ignore labelling of <i>C</i> , <i>D</i>	
	Note	You can follow through either or both accuracy marks in this part using their \overrightarrow{AB} from part (a).	
(f)	M1	Way 1: $\frac{h}{\text{their } \overrightarrow{PB} } = \sin \theta$	
		Way 2: Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $ Way 3: Attempts $\frac{1}{2}$ (their <i>PB</i>)(their <i>AB</i>)sin θ	
	Note	Finding AD by itself is M0.	
	A1	Either • $h = \sqrt{27} \sin(70.5)$ or $ \overrightarrow{PA} = \overrightarrow{CB} = \sqrt{24}$ or equivalent. (See Way 1 and Way 2) or • the area of either triangle <i>APB</i> or <i>APD</i> or <i>BDP</i> = $\frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5)$ o.e. (See Way 3).	
	dM1	which is dependent on the 1 st M1 mark. A full method to find the area of trapezium <i>ABCD</i> . (See Way 1, Way 2 and Way 3).	
	A1 Note	$9\sqrt{2}$ from a correct solution only. A decimal answer of 12.7279 (without a correct exact answer) is A0.	

www.yesterdaysmathsexam.com

www.yesterdaysmathsexam.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE