

Mark Scheme (Results)

January 2014

Pearson Edexcel International Advanced Level

Statistics 2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014 Publications Code IA037876 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Scheme	Marks
Let X = the number of leaf cuttings successfully taking root	
$X \sim B(10, 0.05)$	B1
$P(X = 1) = P(X \le 1) - P(X = 0) \text{or} \ {}^{10}C_1 \times 0.05 \times 0.95^9$ = 0.9139 - 0.5987	M1
= 0.3152 awrt 0.315	A1
$P(X > 2) = 1 - P(X \le 2) = 1 - 0.9885$	M1
= 0.0115 awrt 0.0115	A1
	(5)
$Y \sim \text{Po}(8)$	B1
$\mathbf{P}(Y \ge 10) = 1 - \mathbf{P}(Y \le 9)$	M1
= 1 - 0.7166	
= 0.2834 awrt 0.283	A1
	(3)
	Total (8)
Notes	
B1 use of B(10,0.05). May appear in (i) or (ii) or may be implied	
M1 writing or using $P(X \le 1) - P(X = 0)$ or ${}^{n}C_{1} \times p \times (1-p)^{n-1}$ $(0$	
M1 writing or using $1-P(X \leq 2)$	
B1 writing or using Po(8) or writing or using N(8,7.6)	
M1 writing or using $1 - P(Y \le 9)$ or for M1 for $P\left(Z > \frac{9.5 - 8}{\sqrt{7.6}}\right)$	
A1 for awrt 0.283 from poisson or an answer in the range (0.293,0.295) from normal	
NB using binomial, $P(X \ge 10) = 0.280125$ scores B0M0A0	
Answer only 0.28 or awrt 0.280 scores B0M0A0	
	Let X = the number of leaf cuttings successfully taking root $X \sim B(10,0.05)$ P(X = 1) = P(X ≤ 1) - P(X = 0) or ${}^{10}C_1 \times 0.05 \times 0.95^9$ = 0.9139 - 0.5987 = 0.3152 awrt 0.315 P(X > 2) = 1 - P(X ≤ 2) = 1 - 0.9885 = 0.0115 awrt 0.0115 Y ~ Po(8) P(Y ≥ 10) = 1 - P(Y ≤ 9) = 1 - 0.7166 = 0.2834 awrt 0.283 B1 use of B(10,0.05). May appear in (i) or (ii) or may be implied M1 writing or using P(X ≤ 1) - P(X = 0) or ${}^{n}C_1 \times p \times (1-p)^{n-1}$ (0 M1 writing or using 1 - P(X ≤ 2) B1 writing or using P(X ≤ 1) or for M1 for P(Z > $\frac{9.5-8}{\sqrt{7.6}}$ A1 for awrt 0.283 from poisson or an answer in the range (0.293,0.295) from normal NB using binomial, P(X ≥ 10) = 0.280125scores B0M0A0

Question Number	Scheme	Marks	S
2(a)	List of all the customers (who eat in the restaurant)	B1	(1)
(b)	Customer(s) (who ate in the restaurant)	B1	(1)
(c)	Advantage: more/total accuracy, unbiased	B 1	
(d)	Disadvantage: time consuming to obtain data and analyse it, expensive, difficult to ensure entire population is included Let X = the number of customers who would like more choice on the menu.	B1	(2)
	$H_0: p = 0.3$ $H_1: p > 0.3$	B 1	
	<i>X</i> ~B(50,0.3)	M1	
	$P(X \ge 20) = 1 - P(X \le 19)$ or $CR P(X \le 20) = 0.9522$	M1	
	$= 1 - 0.9152$ $P(X \ge 21) = 0.0478$		
	$= 0.0848 X \ge 21$	A1	
	Do not reject $H_0/$ not significant/20 is not in critical region	M1	
	The percentage of <u>customers</u> who would like more <u>choice</u> on the menu is not more than Bill believes. or There is no evidence to reject <u>Bill's belief</u> .		
		A1cso	
			(6)
		Total (10	0)
	Notes		
(a)	B1 Need the idea of list/register/database and 'customer(s)' Do not allow customer's opinions. 'All' may be implied. Do not allow a partial list e.g. 'A list of 50 customers'		
(b)	B1 customer(s)		
(c)	If not labelled, assume the response refers to a census. 1^{st} B1 is for the advantage and 2^{nd} B1 is for the disadvantage.		
(d)	B1 need both hypotheses with p M1 using B(50,0.3) M1 for $1-P(X \le 19)$ or		
	$P(X \le 20) = 0.9522 \text{ or } P(X \ge 21) = 0.0478 \text{ leading to a critical region } X > k$	or $X \ge k$	
	A1 awrt 0.0848 or critical region $X \ge 21$ or $X > 20$ M1 a correct conclusion for their probability. May be implied by a correct contextual A1 a correct contextual conclusion for their hypotheses and a fully correct solution wi seen. Must mention 'customers' and 'choice' <u>or</u> 'Bill' and 'belief'.		
	NB P(<i>X</i> =20) can score B1M1M0A0M0A0 NB normal approximation gives 0.082(457) and loses all A marks		

Question Number	Scheme	Marks
3(a)	$\frac{1}{6}a(a+1) = 0.6$	M1
	$a^2 + a - 3.6 = 0$	
		M1
	$a = \frac{-1 \pm \sqrt{1 + 4 \times 3.6}}{2}$ = 1.462 a = 1.46 only	Al
	1.102 u 1.10 only	(3)
3(b)	$d_{\rm T} > 1 + 1$	M1A1
	$f(x) = \frac{d}{dx}F(x) = \frac{1}{3}x + \frac{1}{6}$	N/1
(i)	$E(X) = \int_{0}^{2} x \left(\frac{1}{3}x + \frac{1}{6}\right) dx$	M1
	$= \left[\frac{x^3}{9} + \frac{x^2}{12}\right]_0^2$	A1
	$=\frac{11}{9}$ awrt 1 .22	A1
(ii)	$f^2 = 2(1 - 1) + (11)^2$	
	$Var(X) = \int_0^2 x^2 \left(\frac{1}{3}x + \frac{1}{6}\right) dx - \left(\frac{11}{9}\right)^2$	M1
	$= \left[\frac{x^4}{12} + \frac{x^3}{18}\right]_0^2 - \left(\frac{11}{9}\right)^2$	
		A1ft
	$=\frac{23}{81}$ awrt 0.284	A1
		(8)
		Total (11)
	Notes	
(a)	M1 putting $F(x) = 0.6$ or $1 - 0.4$ M1 attempting either completing the square or quadratic formula (one slip allowed) (condone + instead of \pm) Must set $f(a) = 0.6$ or $f(a) = 0.4$ to score this mark. May be implied by implied by awrt 1.46 or awrt -2.46 A1 for 1.46 only (must reject other root if stated) (condone awrt 1.46)	
(b)	1 st M1 attempting to differentiate $F(x)$ at least one $x^n \rightarrow x^{n-1}$	
(i)	2^{nd} M1 for intention to use $\int_0^2 xf(x) dx$ using their f(x) which must be a changed function	n from $F(x)$.
	No need for limits 2^{nd} A1 correct integration (may be unsimplified)	
(ii)	3^{rd} M1 for intention to use $\int x^2 f(x) dx - \mu^2$ using their $f(x)$ which must be a changed function	nction from
	$F(x)$. No need for limits. This may be seen on separate lines. Must substitute their value 4^{th} A1ft correct integration. Ft their E(X).	

Question Number	Scheme		Marks
4(a)	$(H_1:) \lambda > 1.5$	B1	(1)
4(b)	<i>C</i> ~Po(6)	B1	
	$P(C > 10) = 1 - P(X \le 10)$	M1	l
	= 1 - 0.9574		
	= 0.0426 awrt 0.0426	A1	
			(3)
4(c)	$P(X \le 10 \mu = 7) = 0.9015$	M1	l
	$P(X \le 10 \mid \mu = 7.5) = 0.8622$		
	Parameter $\mu = 7$	A1	
	$\lambda = \frac{7}{4}$, 1.75	A1	
			(3)
		To	tal (7)
	Notes		
(a)	B1 Must use λ		
(b)	B1 writing or using Po(6)		
	M1 writing or using $1 - P(X \le 10)$		
	A1 do not isw. e.g. If the response goes on to state the level of significance is 5%, withhold the A mark.		
	NB $P(X \le 9) = 0.9161 P(X \le 11) = 0.9799 \text{ can imply B1}$		
(c)	M1 either $P(X \le 10 \mu = 7) = 0.9015$ or $P(X \le 10 \mu = 7.5) = 0.8622$ award for sight of 0.9015 (or 0.0985) or 0.8622 (or 0.1378)		
	NB λ = 7 scores M1A1A0 allow awrt 1.76 from calculator to score M1A1A1		

Question Number	Scheme	Marks	8
5(a)	Let $X =$ the number of break downs per month		
	$X \sim \operatorname{Po}\left(\frac{15}{12}\right)$	B1	
	$P(X=3) = \frac{e^{-1.25}1.25^3}{3!}$	M1	
	= 0.0933 awrt 0.0933	A1	(3)
(b)	$\mathbf{p}(\mathbf{v} \geq 2) = 1 \cdot \mathbf{p}(\mathbf{v} = 0) \cdot \mathbf{p}(\mathbf{v} = 1)$		(3)
	$P(X \ge 2) = 1 - P(X = 0) - P(X = 1)$ = 1 - e ^{-1.25} (1 + 1.25) = 0.35536	M1	
	= 0.355 **AG	A1cso	
(c)	$(0.355)^4 = 0.0159$ awrt 0.016	M1A1	(2)
			(2)
(d)	$Y \sim$ number of months the photocopier does break down at least twice.		
	Y~ B(12, 0.355)	M1A1	
	$P(Y \ge 2) = 1 - P(Y = 0) - P(Y = 1)$	dM1	
	$= 1 - (1 - 0.355)^{12} - 12(1 - 0.355)^{11}(0.355)$	A1	
	= 0.961	A1	
			(5)
		Total (12	2)
(a)	Notes		
(a)	B1 writing or using Po(1.25) M1 $\frac{e^{-\lambda}\lambda^3}{3!}$		
(b)	NB remember the answer is given (AG) so they must show their working M1 $1-P(X=0)-P(X=1)$ or $1-P(X \le 1)$ and a correct expression using their λ		
(c)	Condone 0.3554 or better M1 Their [(b)] ⁴		
(d)	M1 for identifying Binomial		
	1^{st} A1 B(12, their (b))		
	dM1 $1 - P(Y=0) - P(Y=1)$ or $1 - P(X \le 1)$ dependent on $1^{\text{st}} M1$		
	2^{nd} A1 for a correct expression 3^{rd} A1 for awrt 0.961		

www.yesterdaysmathsexam.com

Question Number	Scheme	Marks
6(a)	$4k \qquad \qquad$	B1 B1
(b)	$\int_{-1}^{1} k(x+1)^2 dx + \int_{1}^{3} k(6-2x) dx = 1$	(2) M1
	$\int_{-1}^{1} k(x^{2} + 2x + 1)dx + \int_{1}^{3} k(6 - 2x)dx = 1$ $k\left[\frac{x^{3}}{3} + x^{2} + x\right]_{-1}^{1} + k\left[6x - x^{2}\right]_{1}^{3} = 1$	M1A1
	$k\left[2\frac{1}{3}+\frac{1}{3}\right]+k\left[9-5\right]=1$	dM1
	$6\frac{2}{3}k = 1$ $k = \frac{3}{20} **AG$	A1cso (5)
(c)	$\int_{-1}^{x} k(x^{2} + 2x + 1)dx = k \left[\frac{x^{3}}{3} + x^{2} + x \right]_{-1}^{x} \text{ or } \left[\frac{k}{3} (x + 1)^{3} \right]_{-1}^{x}$	M1
	$= \frac{3}{20} \left(\frac{x^3}{3} + x^2 + x + \frac{1}{3} \right) \text{or } \frac{1}{20} (x+1)^3$ $\int_1^x k(6-2x) dx + \int_{-1}^1 k(x^2 + 2x+1) dx = k \left[6x - x^2 \right]_1^x + \frac{2}{5}$ $= \frac{3}{20} (6x - x^2 - 5) + \frac{2}{5}$ $= \frac{9}{10} x - \frac{3}{20} x^2 - \frac{7}{20}$	M1
	$F(x) = \begin{cases} 0 & x < -1 \\ \frac{3}{20} \left(\frac{x^3}{3} + x^2 + x + \frac{1}{3} \right) & -1 \le x \le 1 \\ \left(\frac{9}{10} x - \frac{3}{20} x^2 - \frac{7}{20} \right) & 1 < x \le 3 \\ 1 & x > 3 \end{cases}$	B1 A1 A1
	$ \begin{pmatrix} \frac{9}{10}x - \frac{3}{20}x^2 - \frac{7}{20} \\ 1 & 1 < x \le 3 \\ x > 3 \end{pmatrix} $	
		(5)

Question Number	Scheme	Marks
6. cont.	9 3 2 7 05	
(d)	$\frac{9}{10}x - \frac{3}{20}x^2 - \frac{7}{20} = 0.5$	M1
	$3x^2 - 18x + 17 = 0$	
	$10 + \sqrt{10^2 - 4 + 2 + 17}$	dM1
	$x = \frac{18 \pm \sqrt{18^2 - 4 \times 3 \times 17}}{6}$	
	x = 1.17 only	A1
		(3)
		Total (15)
	Notes	. 1 1
(a)	B1 correct shape with correct curvature and straight line with negative gradient. Must st on the <i>x</i> -axis.	art and end
	B1 –1, 1, 3 and $4k$ (or 0.6) labelled in the correct place	
(b)		
	M1 adding two areas and putting equal to 1 eg $\int_{-1}^{1} k(x+1)^2 dx + 4k = 1$	
	M1 attempting to integrate (at least one $x^n \rightarrow x^{n+1}$) or finding area of triangle	
	A1 correct integration $k\left(\frac{x^3}{3} + x^2 + x\right)$ and $k(6x - x^2)$ or $k\left(\frac{x^3}{3} + x^2 + x\right)$ and $4k$	
	$\underline{\text{or}} \ k\left(\frac{(x+1)^3}{3}\right) \text{ and } k\left(\frac{(6-2x)^2}{-4}\right)$	
	M1 dependent on previous two M marks. For using correct limits A1 correct solution with no incorrect working seen	
(c)	For both M marks, attempt to integrate at least one $x^n \rightarrow x^{n+1}$	
	M1 for attempt to integrate line 1 of $f(x)$ with correct limits or with + c and substituting in -1 and setting = 0	
	M1 for attempt to integrate line 2 of $f(x)$ with correct limits and adding $\frac{2}{5}$ oe or their F(1)	1)
	or with + c and substituting in 3 and setting = 1	
	\underline{or} with $+c$ and substituting in 5 and setting -1	
	B1 top and bottom row correct 1^{st} A1 for 2^{nd} line of F(x) with correct range 2^{nd} A1 for 3^{rd} line of F(x) with correct range	
	Do not penalise the use of \leq instead of $<$ and \geq instead of $>$	
(d)	M1 for setting their 2^{nd} line or 3^{rd} line of $F(x) = 0.5$ dM1 for solving a 3 term quadratic dependent on first M1 (must be using their 3^{rd} line o A1 for 1.17only (condone awrt 1.17) must reject other solution (4.825)	f F(<i>x</i>))

Question Number	Scheme	Marks
7	$\frac{64.5 - \mu}{\sigma} = 0.75$	B1 M1 M1 A1
	$\frac{52.5 - \mu}{\sigma} = -1.25$	A1
	$64.5 - \mu = 0.75\sigma$	dM1
	$52.5 - \mu = -1.25\sigma$	
	$\sigma = 6$	A1
	$\mu = 60$	A1
	np = 60	M1
	np(1-p) = 36	M1
	1 - p = 0.6	
	p = 0.4	A1
	n = 150	A1
		(12)
		Total (12)
	Notes	
	B1 ± 0.75 and ± 1.25 (or better) seen	
	1^{st} M1 64±0.5 or 52±0.5	
	2^{nd} M1 standardising either using 64, 65 or 64±0.5 or 52,53 or 52±0.5 with μ and σ	
	or <i>np</i> and $\sqrt{np(1-p)}$ (need not be set equal to a z-value)	
	1 st A1 for $\frac{64.5 - \mu}{\sigma} = 0.75$ (with compatible signs)	
	$2^{\text{nd}} \text{A1 for} \frac{52.5 - \mu}{\sigma} = -1.25 \text{ (with compatible signs)}$	
	3^{rd} M1 solving simultaneous equations dependent on 2^{nd} M1. Must attempt to eliminate μ or σ or np or $\sqrt{np(1-p)}$	
	$3^{rd} A1 \sigma = 6$ $4^{th} A1 \mu = 60$ $4^{th} M1$ provides a second distance in the model of the second s	
	4 th M1 using $\mu = np$ (may be awarded at any stage in the working) 5 th M1 using $\sigma = \sqrt{np(1-p)}$ (may be awarded at any stage in the working)	

www.yesterdaysmathsexam.com

www.yesterdaysmathsexam.com