Multiply out and differentiate <i>wrt</i> to time (or use of product rule i.e. must have two terms with correct structure) $w = 2t^3 = 3t^2 + t$	M1	1.1a						
$y - 2t^3 - 2t^2 + t$								
V = 2i - 3i + i	A1	1.1b						
$2t^3 - 3t^2 + t = 0$ and solve: $t(2t - 1)(t - 1) = 0$	DM 1	1.1b						
$t=0$ or $t=\frac{1}{2}$ or $t=1$; any two	A1	1.1b						
All three	A1	1.1b						
	(5)							
Find x when $t = 0, \frac{1}{2}, 1 \text{ and } 2: (0, \frac{1}{32}, 0, 2)$	M1	2.1						
Distance = $\frac{1}{32} + \frac{1}{32} + 2$	M1	2.1						
$2\frac{1}{16}$ (m) of or 2.06 or better	A1	1.1b						
	(3)							
$x = \frac{1}{2}t^2(t-1)^2$	M1	3.1a						
$\frac{1}{2}$ perfect square so $x \ge 0$ i.e. never negative	A1 cso	2.4						
	(2)							
	(10 n	narks)						
these 2 terms and at least two newsons pairs down by 1								
orrect expression								
DM1: Dependent on first M, for equating to zero and attempting to solve a cubic								
A1: Any two of the three values (Two correct answers can imply a correct method)								
A1: The third value								
 (b) M1: For attempting to find the values of x (at least two) at their t values found in (a) or at t =2 or equivalent e.g. they may integrate their v and sub in at least two of their t values M1: Using a correct strategy to combine their distances (must have at least 3 distances) 								
	$v = 2t^{2} - 3t^{2} + t$ $2t^{3} - 3t^{2} + t = 0 \text{ and solve: } t(2t - 1)(t - 1) = 0$ $t = 0 \text{ or } t = \frac{1}{2} \text{ or } t = 1; \text{ any two}$ All three Find x when $t = 0, \frac{1}{2}, 1 \text{ and } 2: (0, \frac{1}{32}, 0, 2)$ Distance $= \frac{1}{32} + \frac{1}{32} + 2$ $2\frac{1}{16} \text{ (m) oe or } 2.06 \text{ or better}$ $x = \frac{1}{2}t^{2}(t - 1)^{2}$ $\frac{1}{2} \text{ perfect square so } x \ge 0 \text{ i.e. never negative}$ t have 3 terms and at least two powers going down by 1 wrect expression wendent on first M, for equating to zero and attempting to solve a <u>cubic</u> two of the three values (Two correct answers can imply a correct metho) third value ttempting to find the values of x (at least two) at their t values found in (a lent e.g. they may integrate their v and sub in at least two of their t values g a correct strategy to combine their distances (must have at least 3 distance	$v = 2t^2 - 3t^2 + t$ A1 $2t^3 - 3t^2 + t = 0$ and solve: $t(2t - 1)(t - 1) = 0$ DM1 $t = 0$ or $t = \frac{1}{2}$ or $t = 1$; any twoA1All threeA1All threeA1All threeA1Image: All threeA1<						

Question	Scheme	Marks	AOs	Notes
3 (a)	$v = 12 + 4t - t^2 = 0$ and solving	M1	3.1a	Equating v to 0 and solving the quadratic If no evidence of solving, and at least one answer wrong, M0
	t = 6 (or -2)	A1	1.1b	6 but allow -2 as well at this stage
	Differentiate v wrt t	M1	1.1a	For differentiation (both powers decreasing by 1)
	$(a = \frac{\mathrm{d}v}{\mathrm{d}t} =) \ 4 - 2t$	A1	1.1b	Cao; only need RHS
	When $t = 6$, $a = -8$; Magnitude is 8 (m s ⁻²)	A1	1.1b	Substitute in <i>t</i> = 6 and get 8 (m s ⁻²) as the answer. Must be positive. (A0 if two answers given)
		(5)		
(b)	Integrate v wrt t	M1	3.1a	For integration (at least two powers increasing by 1)
	$(s=)12t+2t^2-\frac{1}{3}t^3(+C)$	A1	1.1b	Correct expression (ignore <i>C</i>) only need RHS Must be used in part (b)
	$t = 3 \implies$ distance = 45 (m)	Al	1.1b	Correct distance. Ignore units
		(3)		
(8 marks)			narks)	

Que	stion	Scheme	Marks	AOs
3	(a) $v = 3t - 2t^2 + 14$ and differentiate		M1	3.1a
	$a = \frac{dv}{dt} = 3 - 4t$ or $(7 - 2t) - 2(t + 2)$ using product rule		A1	1.1b
3-4t = 0 and solve for t		M1	1.1b	
	$t = \frac{3}{4}$ oe		A1	1.1b
			(4)	
3(b) Solve pro		Solve problem using $v = 0$ to find a value of $t \left(t = \frac{7}{2} \right)$	M1	3.1a
		$v = 3t - 2t^2 + 14$ and integrate	M1	1.1b
		$s = \frac{3t^2}{2} - \frac{2t^3}{3} + 14t$	A1	1.1b
		Substitute $t = \frac{7}{2}$ into their <i>s</i> expression (M0 if using <i>suvat</i>)	M1	1.1b
		$s = \frac{931}{24} = 38\frac{19}{24} = 38.79166(m)$ Accept 39 or better	A1	1.1b
			(5)	
			(9 n	narks)
Note	es:			
(a)	M1	Multiply out and attempt to differentiate, with at least one power decrea	asing	
	A1	Correct expression		
	M1	Equate their <i>a</i> to 0 and solve for <i>t</i>		
	A1	cao		
(b)	M1	Uses $v = 0$ to obtain a value of t		
	M1	Attempt to integrate, with at least one power increasing		
	A1	Correct expression		
	M1	Substitute in their value of t , which must have come from using $v = 0$, i have integrated)	nto their s	(must
	A1	39 or better		

Questio	n Scheme	Marks	AOs
8 (a)	8(a) Substitution of both $t = 0$ and $t = 10$		2.1
	s = 0 for both $t = 0$ and $t = 10$		1.1b
	Explanation ($s > 0$ for $0 < t < 10$) since $s = \frac{1}{10}t^2(t-10)^2$		2.4
		(3)	
(b)	Differentiate displacement s w.r.t. t to give velocity, v	M1	1.1a
	$v = \frac{1}{10} \left(4t^3 - 60t^2 + 200t \right)$	A1	1.1b
	Interpretation of 'rest' to give		
	$v = \frac{1}{10}(4t^3 - 60t^2 + 200t) = \frac{2}{5}t(t-5)(t-10) = 0$	M1	1.1b
	t = 0.5, 10	A1	1.1b
	Salaat $t = 5$ and substitute their $t = 5$ into a	M1	1.10
	Select $i = 5$ and substitute then $i = 5$ into s	1011	1.1a
	Distance = 62.5 m	Alft	1.1b
		(6)	
		(9 n	narks)
Notes:			
(a) M1: Fo A1: Fo A1: Si	or substituting $t = 0$ and $t = 10$ into <i>s</i> expression or noting that $s = 0$ at both times nee <i>s</i> is a perfect square, $s > 0$ for all other <i>t</i> - values		
(b) M1: Fo A1: Fo M1: Fo A1: Fo M1: Fo	or differentiating s w.r.t. t to give v (powers of t reducing by 1) or a correct v expression in any form or equating v to 0 and factorising or correct t values or substituting their intermediate t value into s		