Question	Scheme	Marks	AOs
8(a)	Multiply out and differentiate $w r t$ to time (or use of product rule i.e. must have two terms with correct structure)	M1	1.1a
	$v=2 t^{3}-3 t^{2}+t$	A1	1.1b
	$2 t^{3}-3 t^{2}+t=0$ and solve: $t(2 t-1)(t-1)=0$	DM1	1.1b
	$t=0$ or $t=\frac{1}{2}$ or $t=1$; any two	A1	1.1b
	All three	A1	1.1b
		(5)	
(b)	Find x when $t=0, \frac{1}{2}, 1$ and $2:\left(0, \frac{1}{32}, 0,2\right)$	M1	2.1
	Distance $=\frac{1}{32}+\frac{1}{32}+2$	M1	2.1
	$2 \frac{1}{16}(\mathrm{~m})$ oe or 2.06 or better	A1	1.1b
		(3)	
(c)	$x=\frac{1}{2} t^{2}(t-1)^{2}$	M1	3.1a
	$\frac{1}{2}$ perfect square so $x \geq 0$ i.e. never negative	A1 cso	2.4
		(2)	
(10 marks)			
Notes:			
(a) M1: Must have 3 terms and at least two powers going down by 1 A1: A correct expression DM1: Dependent on first M, for equating to zero and attempting to solve a cubic A1: Any two of the three values (Two correct answers can imply a correct method) A1: The third value			
(b) M1: For attempting to find the values of x (at least two) at their t values found in (a) or at $t=2$ or equivalent e.g. they may integrate their v and sub in at least two of their t values M1: Using a correct strategy to combine their distances (must have at least 3 distances)			

Question	Scheme	Marks	AOs	Notes
3(a)	$v=12+4 t-t^{2}=0$ and solving	M1	3.1a	Equating v to 0 and solving the quadratic If no evidence of solving, and at least one answer wrong, M0
	$t=6$ (or -2)	A1	1.1b	6 but allow -2 as well at this stage
	Differentiate v wrt t	M1	1.1a	For differentiation (both powers decreasing by 1)
	$\left(a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\right) 4-2 t$	A1	1.1b	Cao; only need RHS
	When $t=6, a=-8$; Magnitude is $8\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	A1	1.1b	Substitute in $t=6$ and get $8\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ as the answer . Must be positive. (A0 if two answers given)
		(5)		
(b)	Integrate v wrt t	M1	3.1a	For integration (at least two powers increasing by 1)
	$(s=) 12 t+2 t^{2}-\frac{1}{3} t^{3}(+C)$	A1	1.1b	Correct expression (ignore C) only need RHS Must be used in part (b)
	$t=3 \Rightarrow$ distance $=45(\mathrm{~m})$	A1	1.1b	Correct distance. Ignore units
		(3)		
(8 marks)				

Question		Scheme	Marks	AOs
3(a)		$v=3 t-2 t^{2}+14$ and differentiate	M1	3.1a
		$a=\frac{\mathrm{d} v}{\mathrm{~d} t}=3-4 t \quad$ or $\quad(7-2 t)-2(t+2)$ using product rule	A1	1.1b
		$3-4 t=0$ and solve for t	M1	1.1b
		$t=\frac{3}{4}$ oe	A1	1.1b
			(4)	
3(b)		Solve problem using $v=0$ to find a value of $t\left(t=\frac{7}{2}\right)$	M1	3.1a
		$v=3 t-2 t^{2}+14$ and integrate	M1	1.1b
		$s=\frac{3 t^{2}}{2}-\frac{2 t^{3}}{3}+14 t$	A1	1.1b
		Substitute $t=\frac{7}{2}$ into their s expression (M0 if using suvat)	M1	1.1b
		$s=\frac{931}{24}=38 \frac{19}{24}=38.79166 . .(\mathrm{m}) \quad$ Accept 39 or better	A1	1.1b
			(5)	
(9 marks)				
Notes:				
(a)	M1	Multiply out and attempt to differentiate, with at least one power decreasing		
	A1	Correct expression		
	M1	Equate their a to 0 and solve for t		
	A1	cao		
(b)	M1	Uses $v=0$ to obtain a value of t		
	M1	Attempt to integrate, with at least one power increasing		
	A1	Correct expression		
	M1	Substitute in their value of t, which must have come from using $v=0$, into their s (must have integrated)		
	A1	39 or better		

Question	Scheme	Marks	AOs
8(a)	Substitution of both $t=0$ and $t=10$	M1	2.1
	$s=0$ for both $t=0$ and $t=10$	A1	1.1b
	Explanation ($s>0$ for $0<t<10$) since $s=\frac{1}{10} t^{2}(t-10)^{2}$	A1	2.4
		(3)	
(b)	Differentiate displacement s w.r.t. t to give velocity, v	M1	1.1a
	$v=\frac{1}{10}\left(4 t^{3}-60 t^{2}+200 t\right)$	A1	1.1 b
	Interpretation of 'rest' to give $v=\frac{1}{10}\left(4 t^{3}-60 t^{2}+200 t\right)=\frac{2}{5} t(t-5)(t-10)=0$	M1	1.1 b
	$t=0,5,10$	A1	1.1b
	Select $t=5$ and substitute their $t=5$ into s	M1	1.1a
	Distance $=62.5 \mathrm{~m}$	A1ft	1.1 b
		(6)	
(9 marks)			
Notes:			
(a) M1: For substituting $t=0$ and $t=10$ into s expression A1: For noting that $s=0$ at both times A1: \quad Since s is a perfect square, $s>0$ for all other t - values			
(b) M1: For differentiating s w.r.t. t to give v (powers of t reducing by A1: For a correct v expression in any form M1: For equating v to 0 and factorising A1: For correct t values M1: For substituting their intermediate t value into s A1: ft following an incorrect t-value			

