

Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE Mathematics

Core Mathematics 1 (6663/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code xxxxxxx* All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2}+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals. www.yesterdaysmathsexam.com

Question Number	Sch	eme	Marks
1.	$\int \left(2x^5 - \frac{1}{4}\right)$	$\frac{1}{2}x^{-3}-5 dx$	
	Ignore any spurious in	tegral signs throughout	
		Raises any of their powers by 1.	
		E.g. $x^5 \rightarrow x^6$ or $x^{-3} \rightarrow x^{-2}$ or $k \rightarrow kx$	
	$x^n \rightarrow x^{n+1}$	or $x^{\text{their}n} \to x^{\text{their}n+1}$. Allow the powers	M1
		to be un-simplified e.g. $x^5 \rightarrow x^{5+1}$ or	
		$x^{-3} \to x^{-3+1}$ or $kx^0 \to kx^{0+1}$.	
	$2 \times \frac{x^{5+1}}{6}$ or $-\frac{1}{4} \times \frac{x^{-3+1}}{-2}$	Any one of the first two terms correct simplified or un-simplified .	A1
		Any two correct simplified terms.	
	1 1	Accept $+\frac{1}{8x^2}$ for $+\frac{1}{8}x^{-2}$ but not x^1	
	Two of: $\frac{1}{3}x^6$, $\frac{1}{8}x^{-2}$, $-5x$	for <i>x</i> . Accept 0.125 for $\frac{1}{8}$ but $\frac{1}{3}$	A1
		would clearly need to be identified	
		as 0.3 recurring.	
		All correct and simplified and	
	$1 \frac{1}{1} $	1 including + c all on one line.	A 1
	$\frac{1}{3}x + \frac{1}{8}x - 5x + c$	Accept $+\frac{1}{8x^2}$ for $+\frac{1}{8}x^{-2}$ but not x^1	AI
		for <i>x</i> . Apply isw here.	
			(4 marks)

Question Number	Sch	eme	Marks
2.	$y = \sqrt{x} + \frac{4}{\sqrt{x}} + 4$	$4 = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}} + 4$	
	$x^n \rightarrow x^{n-1}$	Decreases any power by 1. Either $x^{\frac{1}{2}} \rightarrow x^{-\frac{1}{2}}$ or $x^{-\frac{1}{2}} \rightarrow x^{-\frac{3}{2}}$ or $4 \rightarrow 0$ or $x^{\text{their } n} \rightarrow x^{\text{their } n-1}$ for fractional n .	M1
	$\left(\frac{dy}{dx}\right) = \frac{1}{2}x^{-\frac{1}{2}} + 4 \times -\frac{1}{2}x^{-\frac{3}{2}}$ $\left(=\frac{1}{2}x^{-\frac{1}{2}} - 2x^{-\frac{3}{2}}\right)$	Correct derivative, simplified or un- simplified including indices. E.g. allow $\frac{1}{2}-1$ for $-\frac{1}{2}$ and allow $-\frac{1}{2}-1$ for $-\frac{3}{2}$	A1
	$x = 8 \Longrightarrow \frac{dy}{dx} = \frac{1}{2}8^{-\frac{1}{2}} + 4 \times -\frac{1}{2}8^{-\frac{3}{2}}$	Attempts to substitute $x = 8$ into their 'changed' (even integrated) expression that is clearly not y. If they attempt algebraic manipulation of their dy/dx before substitution, this mark is still available.	M1
	$=\frac{1}{2\sqrt{8}}-\frac{2}{\left(\sqrt{8}\right)^3}=\frac{1}{2\sqrt{8}}-\frac{2}{8\sqrt{8}}=\frac{1}{8\sqrt{2}}=\frac{1}{16}\sqrt{2}$	B1: $\sqrt{8} = 2\sqrt{2}$ seen or implied anywhere, including from substituting $x = 8$ into y. May be seen explicitly or implied from e.g. $8^{\frac{3}{2}} = 16\sqrt{2}$ or $8^{\frac{5}{2}} = 128\sqrt{2}$ or $4\sqrt{8} = 8\sqrt{2}$ A1: $\cos \frac{1}{16}\sqrt{2}$ or $\frac{\sqrt{2}}{16}$ and allow rational equivalents for $\frac{1}{16}$ e.g. $\frac{32}{512}$ Apply isw so award this mark as soon as a correct answer is seen.	B1A1
			(5 marks)

Question Number	Sch	eme	Marks
3. (a)	$(a_2 =)2k$	2k only	B1
	$(a_3 =) \frac{k("2k"+1)}{"2k"}$	For substituting their a_2 into $a_3 = \frac{k(a_2 + 1)}{a_2}$ to find a_3 in terms of just k	M1
	$\left(a_{3}=\right)\frac{2k+1}{2}$	$(a_3 =)\frac{2k+1}{2}$ or exact simplified equivalent such as $(a_3 =)k + \frac{1}{2}$ or $\frac{1}{2}(2k+1)$ but not $k + \frac{k}{2k}$ Must be seen in (a) but isw once a correct simplified answer is seen.	A1
			(3)
	Note that there are <u>no</u> marks in formula unless their term	(b) for using an AP (or GP) sum as do form an AP (or GP).	
(b)	$\sum_{r=1}^{3} a_{r} = 10 \Longrightarrow 1 + "2k" + "\frac{2k+1}{2}" = 10$	Writes 1 + their a_2 + their $a_3 = 10$. E.g. $1+2k + \frac{2k^2 + k}{2k} = 10$. Must be a correct follow through equation in terms of k only.	M1
	$\Rightarrow 2+4k+2k+1=20 \Rightarrow k=$ or e.g. $\Rightarrow 6k^2 - 17k = 0 \Rightarrow k =$	Solves their equation in k which has come from the sum of 3 terms = 10, and reaches $k =$ Condone poor algebra but if a quadratic is obtained then the usual rules apply for solving – see General Principles. (Note that it does not need to be a 3- term quadratic in this case)	M1
	$(k=)\frac{17}{6}$	$k = \frac{17}{6} \text{ or exact equivalent e.g. } 2\frac{5}{6}$ Do not allow $k = \frac{8.5}{3}$ or $k = \frac{17/2}{3}$ Ignore any reference to $k = 0$. Allow 2.83 recurring as long as the recurring is clearly indicated e.g. a dot over the 3.	A1
			(3)
			(6 marks)

Question Number	Sch	eme	Marks
4. (a)	$206 = 140 + (12 - 1) \times d \Longrightarrow d = \dots$	Uses $206 = 140 + (12-1) \times d$ and proceeds as far as $d =$	M1
	(d=)6	Correct answer only can score both marks.	A1
			(2)
(b)		Attempts $S_n = \frac{n}{2}(a+l)$ or	
	12	$S_n = \frac{n}{2} (2a + (n-1)d)$ with $n = 12$,	
	$S_{12} = \frac{12}{2} (140 + 206)$ or	<i>a</i> = 140, <i>l</i> = 206, <i>d</i> = '6' WAY 1 Or	
	$S_{12} = \frac{12}{2} (2 \times 140 + (12 - 1) \times "6")$ or	Attempts $S_n = \frac{n}{2}(a+l)$ or	M1
	$S_{11} = \frac{11}{2} (140 + 206 - "6")$ or	$S_n = \frac{n}{2} (2a + (n-1)d)$ with $n = 11$,	
	$S_{11} = \frac{11}{2} \left(2 \times 140 + (11 - 1) \times "6" \right)$	a = 140, l = 206 - 6', d = 6' WAY2 If they are using	
		$S_n = \frac{n}{2} (2a + (n-1)d), \text{ the } n \text{ must}$	
		be used consistently.	
	$S = 2076 \operatorname{WAY1}$		
	or	Correct sum (may be implied)	A1
	S = 1870 WAY 2		
		Attempts to find $(52-12) \times 206$ or	
	$(52-12) \times 206 = \dots$	$(52-11) \times 206$. Does not have to be	M1
	or $(52-11) \times 206 = \dots$	consistent with their <i>n</i> used for the	1011
		first Method mark.	
		Attempts to find the total by adding	
	Total = "2076" + "8240" =	the sum to 12 terms with $(52 - 12)$	
	(WAY 1)	lots of 206 or attempts to find the	
	or	total by adding the sum to 11 terms	dd M1
	Total = "1870"+ "8446" =	with (52 - 11) lots of 206. I.e.	
	(WAY 2)	mark Dependent on both provious	
		mark. Dependent on both previous	
	10316		A1
	10010		(5)
			(7 marks)
			(

]	Listing	in (b)	:			
Weel	k	1	2	3	4	5	6	7]	
Bicycle	es	140	146	152	158	164	170	176		
Tota	I	140	286	438	596	760	930	1106		
8	9	10	11	12	13		52			
182	188	194	200	206	206		206			
1288	1476	167	0 187	0 2076	2282		10316			
M1: Attempts the sum of either 12 or 11 terms of a series with first term 140 and their <i>d</i> up to $140 + 11d$ or $140 + 10d$. A1: S = 2076 or 1870 Then follow the scheme										
	S	pecia	l case	in (b) -	- Treat	s as si	ngle Al	P with <i>i</i>	n = 52	
$S_n = \frac{52}{2} (2 \times 140 + (52 - 1) \times "6") = 15236$ Scores 11000										
M	1: <i>S</i> _{<i>n</i>}	$=\frac{n}{2}($	2a + (n + 1)	(n-1)d	with <i>n</i>	= 52,	a = 140), <i>d</i> = "6	5" A1: 15236	

Question Number	Sch	eme	Marks
5.(a)	$f(x) = (x-4)^2 + 3$	M1: $f(x) = (x \pm 4)^2 \pm \alpha$, $\alpha \neq 0$ (where α is a single number or a numerical expression $\neq 0$) A1: Allow $(x + 4)^2 + 3$ and ignore any spurious "= 0"	M1A1
	Allow $a = -4, b = 3$	to score both marks	
(b)	(0, 19)	B1: U shape anywhere even with no axes. Do not allow a "V" shape i.e. with an obvious vertex. B1: $P(0, 19)$. Allow $(0, 19)$ or just 19 marked in the correct place as long as the curve (or straight line) passes through or touches here and allow $(19, 0)$ as long as it is marked in the correct place. Correct coordinates may be seen in the body of the script as long as the curve (or straight line) passes through or touches here. If there is any ambiguity, the sketch has precedence.	(2) B1 B1
		sketch to score this mark) B1: $Q(4, 3)$. Correct coordinates that can be scored without a sketch but if a sketch is drawn then it must have a minimum in the first quadrant and no other turning points. May be seen in the body of the script. If there is any ambiguity, the sketch has precedence. Allow this mark if 4 is clearly marked on the <i>x</i> -axis below the minimum and 3 is marked clearly on the <i>y</i> -axis and corresponds to the minimum,	B1
			(3)

(c)		Correct use of Pythagoras'	
	$PO^{2} (0, 4)^{2} + (10, 2)^{2}$	Theorem on 2 points of the form	M1
	PQ = (0-4) + (19-3)	$(0, p)$ and (q, r) where $q \neq 0$ and	111
		$p \neq r$ with p, q and r numeric.	
		Correct un-simplified numerical	
		expression for PQ including the	
		square root. This must come from	
	$PQ = \sqrt{4^2 + 16^2}$	a correct P and Q. Allow e.g	A1
		$PQ = \sqrt{(0-4)^2 + (19-3)^2}$.	
		Allow $\pm \sqrt{(0-4)^2 + (19-3)^2}$	
	$DO = 4\sqrt{17}$	Cao and cso i.e. This must come	A 1
	$PQ = 4\sqrt{17}$	from a correct <i>P</i> and <i>Q</i> .	AI
	Note that it is possible to obtain the correct value for PQ from (-4,3) and		
	(0, 19) and e.g. (0, 13) and (4, -3)		
	awarded for the	correct P and Q.	
			(3)
			(8 marks)

Question Number	Sch	eme	Marks
6. (a)	Replaces 2^{2x+1} with $2^{2x} \times 2$	Uses the addition or power law of indices on 2^{2x} or 2^{2x+1} . E.g.	
	states $2^{2x+1} = 2^{2x} \times 2$	$2^{x} \times 2^{x} = 2^{2x} \operatorname{or} (2^{x})^{2} = 2^{2x} \operatorname{or}$	M1
	or $(2r)^2 = 2^2r$	$2^{2x+1} = 2 \times 2^{2x}$ or $2^{x+0.5} = 2^x \times \sqrt{2}$	
	states $(2^x) = 2^{2x}$	or $2^{2x+1} = (2^{x+0.5})^2$.	
		Cso. Complete proof that includes explicit statements for the addition	
	2 ² r+1 17 2r 0 0	and power law of indices on 2^{2x+1} with no errors. The equation needs	
	$2^{2x+1} - \frac{1}{x} \times 2^{x} + 8 = 0$ $\Rightarrow 2x^{2} - \frac{17}{x} \times 8 = 0^{*}$	to be as printed including the "= 0".	A1*
	$\rightarrow 2y$ $1/y+0=0$	If they work backwards, they do not need to write down the printed	
		answer first but must end with the version in 2^x including '= 0'.	
	The following are examp	bles of acceptable proofs.	
	$2^{2x+1} = \left(2^{x+0.5}\right)^2 = \left(2^x\sqrt{2}\right)^2 = \left(y\sqrt{2}\right)^2 = 2y^2$		
	$\Rightarrow 2^{2x+1} - 17(2^x) + 8 = 2y^2 - 17y + 8 = 0$		
	$2y^2 = 2 \times 2^x$	$2y^2 = 2 \times 2^x \times 2^x = 2^{2x+1}$	
	$\Rightarrow 2^{2x+1} - 17(2^x) + 8 = 2y^2 - 17y + 8 = 0$		
	$2y^2 - 17y + 8 = 0 \Longrightarrow 2($		
	$\Rightarrow 2 \times 2^{2x} - 17(2^x) + 8 = 0$		
	$2^{2x+1} = 2 \times 2^{2x} \Longrightarrow 2 \times$		
	$\Rightarrow 2y^2 - 17y$		
	Scores M1A0 as $2^{2x} = (2^x)^2$	has not been shown explicitly	
	Specia	I Case: $(-x)^2 = 1$	
	$2^{2x+1} = 2^{1} \times (2^{x}) \text{o}$ With or without the multiplication	$r 2^{2x+1} = (2^{x}) \times 2^{1}$	
	explicit evidence of the	power law scores M1A0	
	Example of insu	fficient working: $(x^2)^2 = 2^{-2}$	
	$2^{2\lambda+1} = 2(2)$	$2^{x} = 2y^{2}$	
	scores no marks as neither ri	ne nas been snown explicitly.	(2)

(b)	$2v^2 - 17v + 8 = 0 \rightarrow (2v)$	$(v-8)(=0) \Rightarrow v =$	
	$2y 1/y + 0 = 0 \Rightarrow (2y)$	$f(y = 0) (= 0) \Rightarrow y = \dots$	
	$()^2$		
	$2(2^x)^2 - 17(2^x) + 8 = 0 \Longrightarrow (2(2^x)^2) + 8 = 0 \Longrightarrow (2(2^x)^2) + 8 = 0 \Longrightarrow (2(2^x)^2) \longrightarrow (2(2^x)^2) + 8 = 0 \Longrightarrow (2(2^x)^2) \longrightarrow (2$	$\binom{x^{x}}{2} - 1 \left(\binom{2^{x}}{2} - 8 \right) (= 0) \Longrightarrow 2^{x} = \dots$	
	Solves the given quadratic eithe See General Principles for	M1	
	Note that completing the square		
	$\left(y\pm\frac{17}{4}\right)^2\pm q\pm$		
	$(y=)\frac{1}{2},8$ or $(2^{x}=)\frac{1}{2},8$	Correct values	A1
	$\Rightarrow 2^{x} = \frac{1}{2}, 8 \Rightarrow x = -1, 3$	M1: Either finds one correct value of x for their 2^x or obtains a correct numerical expression in terms of logs e.g. for $k > 0$ $2^x = k \Rightarrow x = \log_2 k$ or $\frac{\log k}{\log 2}$ A1: $x = -1, 3$ only. Must be values of x.	M1 A1
		·	(4)
			(6 marks)

Question Number	Sch	neme	Marks
7. (a)		Attempts to substitutes $x = 4$ into	
	$f'(4) = 30 + \frac{6 - 5 \times 4^2}{\sqrt{4}}$	f'(x) = 30 + $\frac{6-5x^2}{\sqrt{x}}$ or their	M1
		algebraically manipulated $f'(x)$	
	f'(4) = -7	Gradient = -7	A1
	$y - (-8) = "-7" \times (x - 4)$ or $y = "-7" x + c \Longrightarrow -8 = "-7" \times 4 + c$ $\Longrightarrow c = \dots$	Attempts an equation of a tangent using their numeric f'(4) which has come from substituting $x = 4$ into the given f'(x) or their algebraically manipulated f'(x) and $(4, -8)$ with the 4 and -8 correctly placed. If using $y = mx + c$, must reach as far as $c =$	M1
	y = -7x + 20	Cao. Allow $y = 20 - 7x$ and allow the "y =" to become "detached" but it must be present at some stage. E.g. $y =$ = -7x + 20	A1
		•	(4)
(b)	Allow the marks in (b) to score in	n (a) i.e. <u>mark (a) and (b) together</u>	
	$\Rightarrow f(x) = 30x + 6\frac{x^{\frac{1}{2}}}{0.5} - 5\frac{x^{\frac{5}{2}}}{2.5}(+c)$	M1: $30 \rightarrow 30x$ or $\frac{6}{\sqrt{x}} \rightarrow \alpha x^{\frac{1}{2}}$ or $-\frac{5x^2}{\sqrt{x}} \rightarrow \beta x^{\frac{5}{2}}$ (these cases only) A1: Any 2 correct terms which can be simplified or un-simplified. This includes the powers – so allow $-\frac{1}{2}+1$ for $\frac{1}{2}$ and allow $\frac{3}{2}+1$ for $\frac{5}{2}$ (With or without + c) A1: All 3 terms correct which can be simplified or un-simplified. (With or without + c)	M1A1A1
	Ignore any spuri	ous integral signs	
	$x = 4, f(x) = -8 \Longrightarrow$ $-8 = 120 + 24 - 64 + c \Longrightarrow c = \dots$	Substitutes $x = 4$, $f(x) = -8$ into their $f(x)$ (not $f'(x)$) i.e. a changed f'(x) containing $+c$ and rearranges to obtain a value or numerical expression for c .	M1
	$\Rightarrow (f(x) =)30x + 12x^{\frac{1}{2}} - 2x^{\frac{5}{2}} - 88$	Cao and cso (Allow \sqrt{x} for $x^{\frac{1}{2}}$ and e.g. $\sqrt{x^5}$ or $x^2\sqrt{x}$ for $x^{\frac{5}{2}}$). Isw here so as soon as you see the correct answer, award this mark. Note that the "f(x) =" is not needed.	A1 (5)
			(9 marks)

Question Number	Sch	eme	Marks
8.(a)	Gradient of $l_1 = \frac{4}{5}$ oe	States or implies that the gradient of $l_1 = \frac{4}{5}$. E.g. may be implied by a perpendicular gradient of $-\frac{5}{4}$. Do not award this mark for just rearranging to $y = \frac{4}{5}x +$ unless they then state e.g. $\frac{dy}{dx} = \frac{4}{5}$	B1
	Point $P = (5, 6)$	States or implies that P has coordinates (5, 6). $y = 6$ is sufficient. May be seen on the diagram.	B1
	$-\frac{5}{4} = \frac{y - 6''}{x - 5}$ or $y - 6'' = -\frac{5}{4}(x - 5)$ or $"6'' = -\frac{5}{4}(5) + c \Longrightarrow c = \dots$	Correct straight line method using P(5, "6") and gradient of $-\frac{1}{\text{grad }l_1}$. Unless $-\frac{5}{4}$ or $-\frac{1}{4}$ is being used as the gradient here, the gradient of l_1 clearly needs to have been identified and its negative reciprocal attempted to score this mark.	M1
	5x + 4y - 49 = 0	Accept any integer multiple of this equation including "= 0"	A1
			(4)

8(b)		Substitutes $y = 0$ into their l_2 to find		
	$y = 0 \Longrightarrow 5x + 4(0) - 49 = 0 \Longrightarrow x =$	a value for \vec{x} or substitutes $\vec{y} = 0$		
		into l_1 or their rearrangement of l_1 to	M1	
		find a value for x. This may be	IVI I	
	$y=0 \Longrightarrow 5(0)=4x+10 \Longrightarrow x=$	implied by a correct value on the		
		diagram.		
		Substitutes $y = 0$ into their l_2 to find		
	$y = 0 \Longrightarrow 5x + 4(0) - 49 = 0 \Longrightarrow x =$	a value for x and substitutes $y = 0$		
		into l_1 or their rearrangement of l_1 to	N/I	
		find a value for x. This may be	INI I	
	$y=0 \Longrightarrow 5(0)=4x+10 \Longrightarrow x=$	implied by correct values on the		
		diagram.		
	(Note that at $T, x = 9$	1.8 and at S, x = -2.5)		
	Fully correct method using their va	alues to find the area of triangle SPT		
	with vertices at points of the form (5, "6"), (p, 0) and (q, 0) where $p \neq q$			
	Attempts to use integration sho	uld be sent to your team leader		
		1 cm		
	Method 1:	$\frac{1}{2}ST \times 6"$		
	$\frac{1}{2} \times (9.8' - 1 - 2)$	2.5')×'6'=		
	2			
	Method 2:	$\frac{1}{2}SP \times PT$		
	$\frac{1}{2} \times \sqrt{(5 - (-2))^2 + ((-6))^2}$	$\times \sqrt{('9.8'-5)^2 + ('6')^2} = \dots$		
	$2^{-1} \sqrt{(3 - 1)^2} \sqrt{(3 - 1)^2}$	$\left(\frac{\sqrt{10}}{\sqrt{10}}\right)$		
	$\left(=\frac{1}{2}\times\frac{3\sqrt{41}}{2}\times\right)$	$\left\langle \frac{6\sqrt{41}}{5} \right\rangle$	111 (1	
	Note that if the method is correct b	ut slips are made when simplifying	aami	
	any of the calculations, the met	hod mark can still be awarded		
	Method 3:	2 Triangles		
	$\frac{1}{2} \times (5 + 25) \times 6 + \frac{1}{2} \times (98 - 5) \times 6 - 5$			
	$\frac{1}{2} \times (3 + 2.5) \times 0 + \frac{1}{2} \times (9.8 - 5) \times 0 - \dots$			
	Method 4: Sho	oelace method		
	$\frac{1}{5} \begin{vmatrix} 5 & 9.8 & -2.5 & 5 \\ -1 & -1 \end{vmatrix} = \frac{1}{6} \begin{vmatrix} 0 + 0 - 15 \end{vmatrix} = \frac{1}{6} \begin{vmatrix} 0 + 0 - 15 \end{vmatrix} = \frac{1}{6} \begin{vmatrix} -73.8 \end{vmatrix} = \dots$			
	(must see a correct calculation i.e. the middle expression for this			
deteri				
	Method 5: Trapez	zium + 2 triangles		
	$\frac{1}{2} \times ('2.5') \times '2' + \frac{1}{2} ("2" + "6")$	$\times 5 + \frac{1}{2} \times ("9.8" - 5') \times '6' = \dots$		
		$36.9 \operatorname{cso} \operatorname{oe} \operatorname{e.g} \frac{369}{36}, 36\frac{9}{36}, \frac{738}{36}$		
	= 36.9	10 10 20	A1	
		but not e.g. $\frac{73.8}{2}$		
	Note that the final mark is cso so	b beware of any errors that have		
	fortuitously resulte	d in a correct area.		
				(4)
			(8 marks)	

Question Number	Scheme	Marks
9.(a)(i)	B1: Straight line with negat gradient anywhere even wit axes.	ive th no B1
	(0, c) B1: Straight line with an intrational at (0, c) or just c marked on positive y-axis provided the passes through the positive Allow (c, 0) as long as it is in the correct place. Allow (c the body of the script but in ambiguity, the sketch has precedence. Ignore any int with the x-axis.	tercept a the b line y-axis. marked (0, c) in a any tercepts
(a)(ii)	Either: For the shape of a curve in any position. It mut two branches and be asympthorizontally and vertically to obvious "overlap" with the asymptotes, but otherwise be generous. The curve may be away from the asymptote a the end. Sufficient curve may be haviour, both vertically at horizontally and the brancher approach the same asymptote Or the equation $y = 5$ seen independently i.e. whether the sketch has an asymptote here not. Do not allow $y \neq 5$ or x .	$y = \frac{1}{x}$ so thave by totic with no be end little at ust be btic nd es must bte the re or z = 5. B1
	B1: Fully correct graph and horizontal asymptote on the positive y-axis. The asympt does not have to be drawn b equation $y = 5$ must be seen shape needs to be reasonabl accurate with the "ends" no bending away significantly the asymptotes and the bran must approach the same asy Ignore $x = 0$ given as an asy	l with a ote out the n. The ly B1 ot from oches ymptote.
	Allow sketches to be on the same axes.	
		(4)

(b)	$\frac{1}{x} + 5 = -3x + c \Longrightarrow 1 + 5x = -3x^2 + cx$ $\Longrightarrow 3x^2 + 5x - cx + 1 = 0$	Sets $\frac{1}{x} + 5 = -3x + c$, attempts to multiply by <i>x</i> and collects terms (to one side). Allow e.g. ">" or "<" for "=". At least 3 of the terms must be multiplied by <i>x</i> , e.g. allow one slip. The ' = 0' may be implied by subsequent work and provided correct work follows, full marks are still possible in (b).	M1
	$b^2 - 4ac = (5 - c)^2 - 4 \times 1 \times 3$	Attempts to use $b^2 - 4ac$ with their <i>a</i> , <i>b</i> and <i>c</i> from their equation where $a = \pm 3$, $b = \pm 5 \pm c$ and $c = \pm 1$. This could be as part of the quadratic formula or as $b^2 < 4ac$ or as $b^2 > 4ac$ or as $\sqrt{b^2 - 4ac}$ etc. If it is part of the quadratic formula only look for use of $b^2 - 4ac$. There must be no <i>x</i> 's.	M1
	$(5-c)^2 > 12*$	Completes proof with no errors or incorrect statements and with the ">" appearing correctly before the final answer, which could be from $b^2 - 4ac > 0$. Note that the statement $3x^2 + 5x - cx + 1 > 0$ or starting with e.g. $\frac{1}{x} + 5 > -3x + c$ would be an error.	A1*
	Note: A minimum	for (b) could be,	
	$\frac{1}{x} + 5 = -3x + c \Longrightarrow 3x^2 + 3x^2$	-5x - cx + 1 (= 0) (M1)	
	$b^2 > 4ac \Longrightarrow (5-c)$	$c)^{2} > 12 (M1A1)$	
	If $b^2 > 4ac$ is not seen then 4×3	3×1 needs to be seen explicitly.	
			(3)

(c)	$(5-c)^{2} = 12 \Rightarrow (c=)5 \pm \sqrt{12}$ or $(5-c)^{2} = 12 \Rightarrow c^{2} - 10c + 13 = 0$ $\Rightarrow (c=) \frac{-10 \pm \sqrt{(-10)^{2} - 4 \times 13}}{2}$	M1: Attempts to find at least one critical value using the result in (b) or by expanding and solving a 3TQ (See General Principles) (the "= 0" may be implied) A1: Correct critical values in any form. Note that $\sqrt{12}$ may be seen as $2\sqrt{3}$.	M1A1
	$c < "5 - \sqrt{12}$ ", $c > "5 + \sqrt{12}$ "	Chooses outside region. The '0 <' can be ignored for this mark. So look for c < their $5 - \sqrt{12}$, c > their $5 + \sqrt{12}$. This could be scored from $5 + \sqrt{12} < c < 5 - \sqrt{12}$ or $5 - \sqrt{12} > c > 5 + \sqrt{12}$. Evidence is to be taken from their answers not from a diagram.	M1
	$0 < c < 5 - \sqrt{12}, c > 5 + \sqrt{12}$	Correct ranges including the ' $0 <$ ' e.g. answer as shown or each region written separately or e.g. $(0,5-\sqrt{12}), (5+\sqrt{12},\infty)$. The critical values may be un-simplified but must be at least $\frac{10+\sqrt{48}}{2}, \frac{10-\sqrt{48}}{2}$. Note that $0 < c < 5 - \sqrt{12}$ and $c > 5 + \sqrt{12}$ would score M1A0.	A1
	Allow the use of x rather than c in term	(c) but the final answer must be in s of c.	
			(4)
			(11 marks)

www.yesteruaysillatiisexalli.Colli

Question Number	S	cheme	Marks	
10.(a)(i)	$k = \left(-5\right)^2 \times 3 = 75$	M1: Attempts to find the 'y' intercept. Accept as evidence $(-5)^2 \times 3$ with or without the bracket. If they expand f(x) to polynomial form here then they must then select their constant to score this mark . May be implied by sight of 75 on the diagram. A1: $k = 75$.Must clearly be identified as k . Allow this mark even from an incorrect or incomplete expansion as long as the constant $k = 75$ is obtained. Do not isw e.g. if 75 is seen followed by $k = -75$ score M1A0.	M1A1	
(ii)	$c = \frac{5}{2}$ only	$c = \frac{5}{2}$ oe (and no other values). Do not award just from the diagram – must be stated as the value of <i>c</i> .	B1	
				(3)
(b)	$f(x) = (2x-5)^2(x+3) = (4x^2-2)^2(x+3) = (4x^2$	$(0x+25)(x+3) = 4x^3 - 8x^2 - 35x + 75$ mial by attempting to square the first bracket or expands $(2x-5)(x+3)$ and plies by $2x-5$ b) but may be done in part (a). e.g. $(2x-5)^2 = 4x^2 \pm 25$	M1	
	$(f'(x) =)12x^2 - 16x - 35*$	M1: Reduces powers by 1 in all terms including any constant $\rightarrow 0$ A1: Correct proof. Withhold this mark if there have been any errors including missing brackets earlier e.g. $(2x-5)^2(x+3) = 4x^2 - 20x + 25(x+3) =$	M1A1*	(2)
				(3)

		Substitutes $x = 3$ into their f'(x) or	
(c)	$f'(3) = 12 \times 3^2 - 16 \times 3 - 35$	the given $f'(x)$. Must be a changed	M1
	'	function i.e. not into f(<i>x</i>).	
	'	Sets their $f'(x)$ or the given $f'(x) =$	
	$12x^2$ 16x 25 - 125	their f'(3) with a consistent f'.	AN/1
	12x - 10x - 33 - 23	Dependent on the previous method	u 1V11
	'	mark.	
ļ	· · · · · · · · · · · · · · · · · · ·	$12x^2 - 16x - 60 = 0 \text{ or equivalent } 3$	
ļ	1	term quadratic e.g. $12x^2 - 16x = 60$.	'
ļ	$12r^2$ $16r - 60 - 0$	(A correct quadratic equation may be	A1.000
	12x - 10x - 00 - 0	implied by later work). This is cso so	ALCSU
	1	must come from correct work – i.e.	'
	L'	they must be using the given $f'(x)$.	
	/ '	Solves 3 term quadratic by suitable	
	$(x-3)(12x+20) = 0 \Longrightarrow x = \dots$	method – see General Principles.	ddM1
		Dependent on both previous	uum
	<u>⊢</u> ′	method marks.	
	1	$x = -\frac{5}{3}$ oe clearly identified. If $x = 3$	
	1	is also given and not rejected, this	
	1 5	mark is withheld.	
	$x = -\frac{5}{2}$	(allow -1.6 recurring as long as it is	A1 cso
	5	clear i.e. a dot above the 6). This is	
	1	cso and must come from correct	
	1	work – i.e. they must be using the	
	Ļ'	given $f'(x)$.	(7)
	 		(5)
	2		(11 marks)
Alt (b)	$f(x) = (2x-5)^2(x+3) \Longrightarrow f'(x)$	$x = (2x-5)^2 \times 1 + (x+3) \times 4(2x-5)$	
Product	M1: Attempts product rule to give an expression of the form		N/I 1
rule.	$p(2x-5)^2 +$	-q(x+3)(2x-5)	M1Δ1*
	M1: Multiplies o	out and collects terms	1911/31
ļ	A1: $f'(x) = 1$	$2x^2 - 16x - 35*$	

www.yesterdaysmathsexam.com

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE