www.yesterdaysmathsexam.com

Question	Sc	heme	Marks	AOs
13 (a)	$\log_{10} h = 2.25 - 0.235 \log_{10} m$ $\implies h = 10^{2.25 - 0.235 \log_{10} m}$	$h = pm^{q}$ $\Rightarrow \log_{10} h = \log_{10} p + \log_{10} m^{q}$	M1	<mark>1.1b</mark>
	$\Rightarrow h = 10^{2.25} \times m^{-0.235}$ Either one of $p = 10^{2.25}$ $q = -0.235$	$\Rightarrow \log_{10} h = \log_{10} p + q \log_{10} m$ Or either one of $\log_{10} p = 2.25 q = -0.235$	A1	1.1b
	$\Rightarrow p = 178$	and $q = -0.235$	A1 (3)	<mark>2.2a</mark>
(b)	$\frac{h = "178" \times 5^{"-0.235"}}{h = 122}$	$\log_{10} h = "2.25" - "0.235" \log_{10} 5$ $h = 122$	A1	3.1b 1.1b
(c)		g) heart rate (in bpm) of a	A1ft (3) B1	3.2b 3.4
	mammal with a mass of	f 1 kg	(1)	
		Notes	(7	marks)
	shes a link between $h = pm^{q}$ and implied by a correct equation in	10 10		
	prrect equation in p or q			
A1: $p = 178$ (b)	and $q = -0.235$			
M1: Uses ei	ther model to set up an equation	in <i>h</i> (or <i>m</i>)		
A1: $h = awr$	t 122. Condone $h = awrt 122$ bpn	n		
	-	del. Follow through on their answer.		
E.g. It is Do	s a comment consistent with thei s a suitable model as it is only "3 o not allow an argument stating the s an unsuitable model as "122" b	" bpm away from the real value \checkmark hat it should be the same.		
(c) B1: " <i>p</i> " we	ould be the (resting) heart rate of	a mammal with a mass of 1 kg		

www.yesterdaysmathsexam.com

	Scheme	Marks	AOs
11 (a)	$35 (\mathrm{km}^2)$	B1	3.4
		(1)	
(b)		M1	1.1b
(~)	Sets their $60 = 80 - 45e^{14c} \implies 45e^{14c} = 20$	A1	1.1b
	$\Rightarrow c = \frac{1}{14} \ln\left(\frac{20}{45}\right) = \dots - 0.0579$ $A = 80 - 45e^{-0.0579t}$	dM1	3.1b
	$A = 80 - 45e^{-0.0579t}$	A1	3.3
		(4)	
(c)	 Gives a suitable answer The maximum area covered by trees is only 80km² The "80" would need to be "100" Substitutes 100 into the equation of the model and shows that the formula fails with a reason eg. you cannot take a log of a negative number 	B1	3.5b
		(1)	
	·	(6	marks
	Notes		
	the equation of the model to find that $35 (\text{km}^2)$ of the reserve was composed of the second s	vered on 1 ^s	t
	neir $60 = 80 - 45e^{14c} \Longrightarrow Ae^{14c} = B$		
A1: 45e ^{14c}	= 20 or equivalent.		
	Il and careful method using precise algebra, correct log laws and a ki inverse functions and proceeds to a value for c .	nowledge tl	hat e ^x
and lnx are		nowledge tl	hat e ^x
and lnx are	inverse functions and proceeds to a value for c .	nowledge tl	hat e ^x

Question	Sche	eme	Marks	AOs
5 (a)	Identifies one of the two errors "You cannot use the subtraction law " They undo the logs incorrectly. It		B1	2.3
	Identifies both errors. See above.		B1	2.3
			(2)	
(b)	$\log_2\left(\frac{x^2}{\sqrt{x}}\right) = 3$	$\frac{3}{2}\log_2(x) = 3$	M1	1.1b
	$\log_2\left(\frac{x^2}{\sqrt{x}}\right) = 3$ $x^{\frac{3}{2}} = 2^3 \text{or } \frac{x^2}{\sqrt{x}} = 2^3$ $x = \left(2^3\right)^{\frac{2}{3}} = 4$	$x = 2^2$	M1	1.1b
	$x = (2^3)^{\frac{2}{3}} = 4$	x = 4	A1	1.1b
		•	(3)	
			(5	5 marks)
correct. A Allow real Do not ac reference Error Tw $x = 2^3 = 3$	writes ' that line 2 should be $\log_2\left(\frac{x}{\sqrt{x}}\right)$ Allow 'the coefficient of each log terms sponses such as 'it must be $\log x^2$ be ccept an incomplete response such as e to the subtraction law as well. To: Either in words states 'They undo 8' If it is rewritten it must be corrected by both of the two errors. (See above)	m is different so we cannot use the s fore subtracting the logs' s "the student ignored the 2". There the log incorrectly' or writes that 'i t. Eg $x = \log_2 9$ is B0	subtraction must be s	n law' some
	s a correct method of combining the on law to reach a form $\log_2\left(\frac{x^2}{\sqrt{x}}\right) =$	-	-	
reach $\frac{3}{2}$ l	$\operatorname{og}_{2}(x) = 3$			
	s correct work to "undo" the log. Eg	= \ /	$= 2^{b}$	
A1: csc	s is independent of the previous mark o $x = 4$ achieved with at least one int e "answer" rather than the "solution"	termediate step shown. Extra solution	ons would	be A0

value of Accept " represent Do not a If they a as long a (c) M1: For $\log_{10}V =$ A1: For	the rate" by which the value is rising/price is changing. "1.122 is the deciding the year on year increase in value" ccept "the amount" by which it is rising or "how much" it is rising by re not labelled (b)(i) and (b)(ii) mark in the order given but accept a is clearly labelled " p is	ny way ar ruting <i>t</i> =30	ound
B1: The value of Accept " represent Do not a If they a as long a (c) M1: For $\log_{10}V =$ A1: For	ing the year on year increase in value" ccept "the amount" by which it is rising or "how much" it is rising by re not labelled (b)(i) and (b)(ii) mark in the order given but accept a is clearly labelled "p is" and "q is" substituting $t = 30$ into $V = pq'$ using their values for p and q or substit 0.05t + 4.8 and proceeds to V awrt either £1.99 million or £2.00 million. Condone the omission of the	ny way ar ruting <i>t</i> =30	ound
B1: The value of Accept " represent Do not a If they a as long a (c) M1: For $\log_{10}V =$ A1: For	ing the year on year increase in value" ccept "the amount" by which it is rising or "how much" it is rising by re not labelled (b)(i) and (b)(ii) mark in the order given but accept a is clearly labelled "p is" and "q is" substituting $t = 30$ into $V = pq'$ using their values for p and q or substit 0.05t + 4.8 and proceeds to V awrt either £1.99 million or £2.00 million. Condone the omission of the	ny way ar ruting <i>t</i> =30	ound
B1: The value of Accept " represent Do not a If they a as long a (c) M1: For $\log_{10}V =$	ing the year on year increase in value" ccept "the amount" by which it is rising or "how much" it is rising by re not labelled (b)(i) and (b)(ii) mark in the order given but accept a is clearly labelled "p is" and "q is" substituting $t = 30$ into $V = pq^t$ using their values for p and q or substit 0.05t + 4.8 and proceeds to V	ny way ar ruting <i>t</i> =30	ound
B1: The value of Accept " represent Do not a If they a as long a (c) M1: For	ing the year on year increase in value" ccept "the amount" by which it is rising or "how much" it is rising by re not labelled (b)(i) and (b)(ii) mark in the order given but accept a s clearly labelled " p is	ny way ar	ound
B1: The value of Accept " represent Do not a If they a as long a (c)	ing the year on year increase in value" ccept "the amount" by which it is rising or "how much" it is rising by re not labelled (b)(i) and (b)(ii) mark in the order given but accept a is clearly labelled " p is	ny way ar	ound
B1: The value of Accept " represent Do not a If they a	ing the year on year increase in value" ccept "the amount" by which it is rising or "how much" it is rising by re not labelled (b)(i) and (b)(ii) mark in the order given but accept a		
B1: The value of Accept " represent Do not a	ing the year on year increase in value" ccept "the amount" by which it is rising or "how much" it is rising by		
B1: The value of Accept " represent	ing the year on year increase in value"	imal multij	olier
B1: The value of Accept "		imal multij	olier
B1: The			
	the painting will rise 12.2% a year. (Follow through on their value of q .)	1	
(1-)()	proportional increase in value each year. Eg Accept an explanation that	explains th	at the
	cept the original value/cost of the painting or the initial value/cost of the	painting	
B1: The	value of the painting on 1st January 1980 (is £63 100)		
 (b)(i)			
A1: $p =$	awrt 63100 and $q = awrt 1.122$		
	s their found value of p and another value of t to find form an equation i	n <i>q</i>	
A1: $p =$	awrt 63100		
	stitutes $t = 0$ and states that $\log p = 4.8$		
ALT I(a	· · · · · · · · · · · · · · · · · · ·		••••
A1: For	p = awrt 63100 and $q = awrt 1.122$ Both these values implies M1 M	11	
	and $q = 10^{0.05}$ but may be $\log q = 0.05$ and $\log p = 4.8$	2	
	linking the two equations and forming correct equations in p and q . This	s is usually	
• •	p = awrt 63100 or q = awrt 1.122		
	a conflict equation in p of q This is usually $p = 10$ of $q = 10$ but 05 or $\log p = 4.8$	i may de	
(a) M1 · For	a correct equation in p or q This is usually $p = 10^{4.8}$ or $q = 10^{0.05}$ but	maybo	
(-)	Notes		
		(8	marks
		(2)	
	$= \operatorname{awrt}(\mathfrak{t}) 2000000$	A1	1.1b
(c)	Uses $V = 63100 \times 1.122^{30}$ or $\log V = 0.05 \times 30 + 4.8$ leading to $V =$	M1	3.4
		(2)	
	(ii) The proportional increase in value each year	B1	3.4
(b)	(i) The value of the painting on 1st January 1980	B1	3.4
<u></u>		(4)	
	For $p = awrt 63100$ and $q = awrt 1.122$	A1	1.1b
	For correct equations in p and q $p = 10^{4.8}$ and $q = 10^{0.05}$	dM1	3.1a

Question	Scheme	IVIAI KS	AUS
14 (a)	Attempts to complete the square $(x \pm 3)^2 + (y \pm 5)^2 =$	M1	1.1b

	(i) Centre $(3, -5)$	A1	1.1b
	(ii) Radius 5	A1	1.1b
		(3)	
(b)	Uses a sketch or otherwise to deduce $k = 0$ is a critical value	B1	2.2a
	Substitute $y = kx$ in $x^2 + y^2 - 6x + 10y + 9 = 0$	M1	3.1a
	Collects terms to form correct 3TQ $(1+k^2)x^2 + (10k-6)x + 9 = 0$	A1	1.1b
	Attempts $b^2 - 4ac0$ for their <i>a</i> , <i>b</i> and <i>c</i> leading to values for <i>k</i> " $(10k-6)^2 - 36(1+k^2)0$ " $\rightarrow k =,$ $\left(0 \text{ and } \frac{15}{8}\right)$	M1	1.1b
	Uses $b^2 - 4ac > 0$ and chooses the outside region (see note) for their critical values (Both <i>a</i> and <i>b</i> must have been expressions in <i>k</i>)	dM1	3.1a
	Deduces $k < 0, k > \frac{15}{8}$ oe	A1	2.2a
		(6)	

Notes

(a)

M1: Attempts $(x \pm 3)^2 + (y \pm 5)^2 = ...$

This mark may be implied by candidates writing down a centre of $(\pm 3, \pm 5)$ or $r^2 = 25$

(i) A1: Centre (3, -5)

(ii) A1: Radius 5. Do not accept $\sqrt{25}$

Answers only (no working) scores all three marks

(b)

B1: Uses a sketch or their subsequent quadratic to deduce that k = 0 is a critical value. You may award for the correct k < 0 but award if $k \le 0$ or even with greater than symbols

M1: Substitutes y = kx in $x^2 + y^2 - 6x + 10y + 9 = 0$ or their $(x \pm 3)^2 + (y \pm 5)^2 = ...$ to form an

equation in just x and k. It is possible to substitute $x = \frac{y}{k}$ into their circle equation to form an equation in just y and k.

A1: Correct 3TQ $(1+k^2)x^2 + (10k-6)x + 9 = 0$ with the terms in x collected. The "= 0" can be implied by subsequent work. This may be awarded from an equation such as

 $x^{2} + k^{2}x^{2} + (10k-6)x + 9 = 0$ so long as the correct values of a, b and c are used in $b^{2} - 4ac...0$.

FYI The equation in y and k is $(1+k^2)y^2 + (10k^2 - 6k)y + 9k^2 = 0$ oe

M1: Attempts to find two critical values for *k* using $b^2 - 4ac...0$ or $b^2...4ac$ where ... could be "=" or any inequality.

dM1: Finds the outside region using their critical values. Allow the boundary to be included. It is dependent upon all previous M marks and both *a* and *b* must have been expressions in *k*. Note that it is possible that the correct region could be the inside region if the coefficient of k^2 in 4ac is larger than the coefficient of k^2 in b^2 Eg.

 $b^{2} - 4ac = (k - 6)^{2} - 4 \times (1 + k^{2}) \times 9 > 0 \Longrightarrow -35k^{2} - 12k > 0 \Longrightarrow k (35k + 12) < 0$

Question	Scheme	Marks	AOs
14 (a)	(£)18 000	B1	3.4
		(1)	
(b)	dV azz	M1	3.1b
(~)	(i) $\frac{\mathrm{d}V}{\mathrm{d}t} = -3925\mathrm{e}^{-0.25t}$	Al	1.1b
	Sets $-3925e^{-0.25T} = -500 \Longrightarrow 3925e^{-0.25T} = 500 * cso$	A1*	3.4
	(ii) $e^{-0.25T} = 0.127 \Rightarrow -0.25T = \ln 0.127$	M1	1.1b
	$\frac{T}{T} = 8.24 \text{ (awrt)}$	A1	1.1b
	8 years 3 months	A1	3.2a
		(6)	
(c)	2 300	B1	1.1b
		(1)	
(d)	 Any suitable reason such as Other factors affect price such as condition/mileage If the car has had an accident it will be worth less than the model predicts The price may go up in the long term as it becomes rare £2300 is too large a value for a car's scrap price. Most cars scrap for around £400 	B1	3.5b
		(1)	
		(9	mark
(a) B1: £180 (b)(i)	Notes 00 There is no requirement to have the units		
B1: £180 (b)(i) M1: Award Score required.	There is no requirement to have the units d for making the link between gradient and rate of change. for attempting to differentiate V to $\frac{dV}{dt} = ke^{-0.25t}$ An attempt at both		
 B1: £180 (b)(i) M1: Award Score required. For th 	There is no requirement to have the units d for making the link between gradient and rate of change. for attempting to differentiate V to $\frac{dV}{dt} = ke^{-0.25t}$ An attempt at both e left hand side you may condone attempts such as $\frac{dy}{dx}$	sides are	
 B1: £180 (b)(i) M1: Award Score required. For th A1: Achie A1*: Sets This t m SC: Award 	There is no requirement to have the units d for making the link between gradient and rate of change. for attempting to differentiate V to $\frac{dV}{dt} = ke^{-0.25t}$ An attempt at both e left hand side you may condone attempts such as $\frac{dy}{dx}$ wes $\frac{dV}{dt} = -3925e^{-0.25t}$ or $\frac{dV}{dt} = 15700 \times -0.25e^{-0.25t}$ with both sides $-3925e^{-0.25T} = -500$ oe and proceeds to $3925e^{-0.25T} = 500$ is a given answer and to achieve this mark, all aspects must be seen a ust be changed to T at some point even if just at the end of their solt 4 SC 110 candidates who simply write	sides are correct and be corr ution/proo	ect.
 B1: £180 (b)(i) M1: Award Score required. For th A1: Achie A1*: Sets this t mis SC: Award -39 	There is no requirement to have the units I for making the link between gradient and rate of change. for attempting to differentiate V to $\frac{dV}{dt} = ke^{-0.25t}$ An attempt at both e left hand side you may condone attempts such as $\frac{dy}{dx}$ wes $\frac{dV}{dt} = -3925e^{-0.25t}$ or $\frac{dV}{dt} = 15700 \times -0.25e^{-0.25t}$ with both sides $-3925e^{-0.25T} = -500$ oe and proceeds to $3925e^{-0.25T} = 500$ is a given answer and to achieve this mark, all aspects must be seen a ust be changed to T at some point even if just at the end of their sol 1 SC 110 candidates who simply write $25e^{-0.25T} = -500 \Rightarrow 3925e^{-0.25T} = 500$ without any mention or referen	sides are correct and be corr ution/proof ce to $\frac{dV}{dt}$	ect. f
 B1: £180 (b)(i) M1: Award Score required. For th A1: Achie A1*: Sets <i>t</i> m SC: Award -39 Or 1570 	There is no requirement to have the units d for making the link between gradient and rate of change. for attempting to differentiate V to $\frac{dV}{dt} = ke^{-0.25t}$ An attempt at both e left hand side you may condone attempts such as $\frac{dy}{dx}$ wes $\frac{dV}{dt} = -3925e^{-0.25t}$ or $\frac{dV}{dt} = 15700 \times -0.25e^{-0.25t}$ with both sides $-3925e^{-0.25T} = -500$ oe and proceeds to $3925e^{-0.25T} = 500$ is a given answer and to achieve this mark, all aspects must be seen a ust be changed to T at some point even if just at the end of their solt 4 SC 110 candidates who simply write	sides are correct and be corr ution/proof ce to $\frac{dV}{dt}$	ect. f
 B1: £180 (b)(i) M1: Award Score required. For th A1: Achie A1*: Sets <i>t</i> mis SC: Award -39 Or 1570 (b)(ii) 	There is no requirement to have the units I for making the link between gradient and rate of change. for attempting to differentiate V to $\frac{dV}{dt} = ke^{-0.25t}$ An attempt at both e left hand side you may condone attempts such as $\frac{dy}{dx}$ wes $\frac{dV}{dt} = -3925e^{-0.25t}$ or $\frac{dV}{dt} = 15700 \times -0.25e^{-0.25t}$ with both sides $-3925e^{-0.25T} = -500$ oe and proceeds to $3925e^{-0.25T} = 500$ is a given answer and to achieve this mark, all aspects must be seen a ust be changed to T at some point even if just at the end of their sol 1 SC 110 candidates who simply write $25e^{-0.25T} = -500 \Rightarrow 3925e^{-0.25T} = 500$ without any mention or referen	sides are correct and be corr ution/proof ce to $\frac{dV}{dt}$	ect. f
 B1: £180 (b)(i) M1: Award Score required. For th A1: Achie A1*: Sets <i>t</i> m SC: Award -39 Or 1570 (b)(ii) M1: Proceed 	There is no requirement to have the units If for making the link between gradient and rate of change. for attempting to differentiate V to $\frac{dV}{dt} = ke^{-0.25t}$ An attempt at both e left hand side you may condone attempts such as $\frac{dy}{dx}$ wes $\frac{dV}{dt} = -3925e^{-0.25t}$ or $\frac{dV}{dt} = 15700 \times -0.25e^{-0.25t}$ with both sides $-3925e^{-0.25T} = -500$ oe and proceeds to $3925e^{-0.25T} = 500$ is a given answer and to achieve this mark, all aspects must be seen a sust be changed to T at some point even if just at the end of their sol 1 SC 110 candidates who simply write $25e^{-0.25T} = -500 \Rightarrow 3925e^{-0.25T} = 500$ without any mention or referen $00 \times -0.25e^{-0.25t} = -500 \Rightarrow 3925e^{-0.25T} = 500$ without any mention or	sides are correct and be corr ution/proof ce to $\frac{dV}{dt}$ reference t $\Rightarrow \pm 0.25T =$	ect. f to $\frac{\mathrm{d}V}{\mathrm{d}t}$

www.yesterdaysmathsexam.com

Question	Sch	eme	Marks	AOs
8 (a)	Temperature = 83°C		B1	3.4
			(1)	
(b)	$18 + 65e^{-\frac{t}{8}} = 35=$	$\Rightarrow 65e^{-\frac{t}{8}} = 17$	M1	1.1b
	$t = -8\ln\left(\frac{17}{65}\right)$	$\ln 65 - \frac{t}{8} = \ln 17 \Longrightarrow t = \dots$	dM1	1.1b
	t = 1	10.7	A1	1.1b
			(3)	
(c)	States a suitable reason			
	• As $t \to \infty, \theta \to 18$ from a	bove.	B1	2.4
	• The minimum temperatur	re is 18°C		
			(1)	
(d)	$A + B = 94$ or $A + Be^{-1} = 5$	0	M1	3.4
	$A+B=94$ and $A+Be^{-1}$	¹ = 50	A1	1.1b
	Full method to find at least a valu	ie for A	dM1	2.1
	Deduces $\mu = \frac{50e - 94}{e - 1}$ or acc	cept μ = awrt 24.4	A1	2.2a
			(4)	
			(9	marks)
		N Y /	()	inui Koj

Notes

(a)

B1: Uses the model to state that the temperature $= 83^{\circ}$ C Requires units as well

(b)

M1: Uses the information and proceeds to $Pe^{\pm \frac{t}{8}} = Q$ condoning slips

dM1: A full method using correct log laws and a knowledge that e^x and $\ln x$ are inverse functions. This cannot be scored from unsolvable equations, e.g. P > 0, Q < 0. Condone one error in their solution.

A1: t = awrt 10.7

(c)

B1: States a suitable reason with minimal conclusion

• As $t \to \infty, \theta \to 18$ from above.

- The minimum temperature is 18°C (so it cannot drop to 15°C)
- Substitutes $\theta = 15$ (or a value between 15 and 18) into $18 + 65e^{-\frac{1}{8}} = 15$ (may be impied by 15 - 18 = -3 or similar) and makes a statement that $e^{-\frac{t}{8}}$ cannot be less than zero or else that $\ln(-ve)$ is undefined and hence $\theta \neq 15$. All calculations must be correct
- (According to the model) the room temperature is 18°C (so cannot fall below this)

Question	Sch	eme	Marks	AOs
12 (a)	$\log_{10} V = 0.072t + 2.379$ $\Rightarrow V = 10^{0.072t + 2.379}$ $\Rightarrow V = 10^{0.072t} \times 10^{2.379}$	$V = ab^{t}$ $\Rightarrow \log_{10} V = \log_{10} a + \log_{10} b^{t}$ $\Rightarrow \log_{10} V = \log_{10} a + t \log_{10} b$	B1	2.1
	States either $a = 10^{2.379}$ or $b = 10^{0.072}$	States either $\log_{10} a = 2.379$ or $\log_{10} b = 0.072$	M1	1.1b
	a = 239 or $b = 1.18$	a = 239 or $b = 1.18$	A1	1.1b
	Either $V = 239 \times 1.18^t$ or i	mply by $a = 239, b = 1.18$	A1	1.1b
			(4)	
(b)	The value of <i>ab</i> is the (total) num after it went live.	ber of views of the advert 1 day	B1	3.4
			(1)	
(c)	Substitutes $t = 20$ in either each Eg $V = 22$	-	M1	3.4
	Awrt 6500 or		A1	1.1b
			(2)	
			(7	' marks)

(a) Condone \log_{10} written \log or \lg written throughout the question

B1: Scored for showing that $\log_{10} V = 0.072t + 2.379$ can be written in the form $V = ab^{t}$ or vice versa

Either starts with $\log_{10} V = 0.072t + 2.379$ (may be implied) and **shows lines** $V = 10^{0.072t + 2.379}$ and $V = 10^{0.072t} \times 10^{2.379}$

Or starts with $V = ab^{t}$ (implied) and shows the lines

 $\log_{10} V = \log_{10} a + \log_{10} b'$ and $\log_{10} V = \log_{10} a + t \log_{10} b$

- M1: For a correct equation in *a* or a correct equation in *b*
- A1: Finds either constant. Allow a = awrt 240 or b = awrt 1.2 following a correct method
- A1: Correct solution: Look for $V = 239 \times 1.18^{t}$ or a = 239, b = 1.18Note that this is NOT awrt
- (b)

B1: See scheme. Condone not seeing total. Do not allow number of views at the start or similar.

(c)

- M1: Substitutes t = 20 in either their $V = 239 \times 1.18^{t}$ or $\log_{10} V = 0.072t + 2.379$ and uses a correct method to find V
- A1: Awrt 6500 or 6600

Question	Scheme		Marks	AOs
14(a)	$\log_{10} P = mt + c$		M1	1.1b
	$\log_{10} P = \frac{1}{200}t + 5$		A1	1.1b
			(2)	
(b)		<u>Way 2:</u> $P = \frac{t}{200} + 5$ then $\frac{t}{200} + 5 = 10^{5} 10^{\left(\frac{t}{200}\right)}$	M1	2.1
	$\log_{10} b = \frac{1}{200}$ or $\log_{10} a = 5$ $a = 10^5$ or b	$=10^{\left(\frac{1}{200}\right)}$	M1	1.1b
	So <i>a</i> = 100 000 or <i>b</i> = 1.0116		A1	1.1b
	Both <i>a</i> = 100 000 and <i>b</i> = 1.0116 (awrt 1.01))	A1	1.1b
			(4)	
(c)(i)	The initial population		B1	3.4
(c)(ii)	The proportional increase of population each y	year	B1	3.4
			(2)	
(d)(i)	300000 to nearest hundred thousand		B1	3.4
(d)(ii)	Uses $200000 = ab^t$ with their values of a and $\log_{10} 200000 = \frac{1}{200}t + 5$ and rearranges to give		M1	3.4
	60.2 years to 3sf		Alft	1.1b
	Any two valid reasons a z		(3)	
(e)	 Any two valid reasons- e.g. 100 years is a long time and population wars and disease Inaccuracies in measuring gradient ma different estimates Population growth may not be proporti size The model predicts unlimited growth 	y result in widely	B2	3.5b
			(2)	

(i) $\frac{(2y-b)}{(2y-b)} = 3^{2}$ $\frac{(9y+b)}{(2y-b)} = 9(2y-b) \Rightarrow y =$ $y = \frac{10}{9}b$ Way 2 Or: $\log_{3}(9y+b) = \log_{3}9 + \log_{3}(2y-b)$ $\log_{3}(9y+b) = \log_{3}9(2y-b)$ $(9y+b) = 9(2y-b) \Rightarrow y = \frac{10}{9}b$ Multiplies across and m (i) I st M1: Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a que correct. The marks is for $x + a = \sqrt{16a^{6}}$ is so allow $x + a = \pm 4$ $x + a = 4a^{4}$ or $x + a = \pm 4a^{5.5}$ or even $x + a = 16a^{3}$ as there is evi May see the correct $x + a = 10^{(\log 4+3\log a)}$ so $x = -a + 10^{(\log 4+3\log a)}$ we by the answer in the scheme. (ii) M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_{3} 3^{2} = 2$ $3^{rd} M1: Obtains correct linear equation in y usually the one in the scheme: Alcso: y = \frac{10}{9}b or correct equivalent after completely correct work Special case: \frac{\log_{3}(9y+b)}{\log_{3}(2y-b)} = 2 is M0 unless clearly crossed out and replaced by the subtraction or addition and replaced by the subtraction or addition and replaced by the subtraction or addition and the scheme is a first the scheme is a scheme in the scheme.$		Marks
Removes logs and square roots, or halves then removes logs to giveOr $x^2 + 2ax + a^2 - 16a^6 = 0$ followed by factorisation or formula to $(x =) 4a^3 - a$ (depends on previous M's and must be this expr (ii) $Way 1$ $\log_3 \frac{(9y+b)}{(2y-b)} = 2$ $Applies q$ $\frac{(9y+b)}{(2y-b)} = 3^2$ $(9y+b) = 9(2y-b) \Rightarrow y =$ $y = \frac{10}{9}b$ Way 2Or : $\log_3(9y+b) = \log_3 9 + \log_3(2y-b)$ $\log_3(9y+b) = \log_3 9(2y-b)$ $(9y+b) = 9(2y-b) \Rightarrow y = \frac{10}{9}b$ Multiplies across and m(i)1st M1: Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a que correct. The marks is for $x + a = \sqrt{16a^6}$ is we callow $x + a = \pm 4$ $x + a = 4a^4$ or $x + a = \pm 4a^{55}$ or even $x + a = 16a^3$ as there is evi May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ we by the answer in the scheme.(ii)(iii)M1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see th M1: Uses $\log_3 3^2 = 2$ 3rd M1: Obtains correct linear equation in y usually the one in the sc A1 cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\log_3(2y - b) = 2$ is M0 unless clearly crossed out and replaced by the order of the set	$2\log 4a^3$ or	M1
(ii) (iii) (iii) (iv)	$(x + a) - 4a^3$	
(ii) Way 1 $\log_{3} \frac{(9y+b)}{(2y-b)} = 2$ Applies q $\frac{(9y+b)}{(2y-b)} = 3^{2}$ $(9y+b) = 9(2y-b) \Rightarrow y =$ Multiplie $y = \frac{10}{9}b$ Way 2 Or: $\log_{3}(9y+b) = \log_{3}9 + \log_{3}(2y-b)$ $\log_{3}(9y+b) = \log_{3}9(2y-b)$ (9y+b) = 9(2y-b) $\Rightarrow y = \frac{10}{9}b$ Multiplies across and m (i) 1 st M1: Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a qu correct. The marks is for $x + a = \sqrt{16a^{5}}$ is wo allow $x + a = \pm 4$ $x + a = 4a^{4}$ or $x + a = \pm 4a^{55}$ or even $x + a = 16a^{3}$ as there is evi May see the correct $x + a = 10^{(\log 4+3\log a)}$ so $x = -a + 10^{(\log 4+3\log a)}$ w by the answer in the scheme. A1: Do not allow $x = \pm 4a^{3} - a$ for accuracy mark. You may see th M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_{3} 3^{2} = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the scheme. Alcso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_{3}(9y+b)}{\log_{3}(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the open set of the scheme in the sc		M1
Way 1 $\log_3 \frac{(2y-b)}{(2y-b)} = 2$ Applies q $(9y+b) = 3^2$ $(9y+b) = 3^2$ Multiplie $(9y+b) = 9(2y-b) \Rightarrow y =$ Multiplie $y = \frac{10}{9}b$ $y = \frac{10}{9}b$ Multiplies across and m(i) 1^4 M1: Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a qu correct. The marks is for $x + a = \sqrt{16a^6}$ is w so allow $x + a = \pm 4$ (i) $x + a = 4a^4$ or $x + a = \pm 4a^{5.5}$ or even $x + a = 16a^3$ as there is evi May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ we by the answer in the scheme.(ii)M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the sc Alcso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_3(9y + b)}{\log_3(2y - b)} = 2$ is M0 unless clearly crossed out and replaced by the subtraction or addition and replaced by the log and the subtraction or addition and the scheme is the scheme is the scheme is the scheme is the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the scheme is $2 \log_3(9y + b) = 2$ is M0 unless clearly crossed out and replaced by the special case: $\frac{\log_3(9y + b)}{\log_3(2y - b)} = 2$ is M0 unless clearly crossed out and replaced by the special case: $\frac{\log_3(9y + b)}{\log_3(2y - b)} = 2$ is M0 unless clearly crossed out and replaced by the special case:	ression or equivalent)	A1cao (3)
(i) (9y+b) = 9(2y-b) \Rightarrow y = Multiplie $y = \frac{10}{9}b$ Way 2 Or: $\log_3(9y+b) = \log_3 9 + \log_3(2y-b)$ $\log_3(9y+b) = \log_3 9(2y-b)$ (9y+b) = 9(2y-b) \Rightarrow y = $\frac{10}{9}b$ Multiplies across and m (i) 1 st M1: Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a qu correct. The marks is for $x + a = \sqrt{16a^6}$ isw so allow $x + a = \pm 4$ $x + a = 4a^4$ or $x + a = \pm 4a^{5.5}$ or even $x + a = 16a^3$ as there is evi May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ w by the answer in the scheme. A1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see th M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the sc A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct word Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the	quotient law of logarithms	M1
$y = \frac{10}{9}b$ Way 2 Or: $\log_3(9y+b) = \log_3 9 + \log_3(2y-b)$ $\log_3(9y+b) = \log_3 9(2y-b)$ $(9y+b) = 9(2y-b) \Rightarrow y = \frac{10}{9}b$ Multiplies across and m (i) $1^{st} M1: Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a qu correct. The marks is for x + a = \sqrt{16a^6} isw so allow x + a = \pm 4 x + a = 4a^4 or x + a = \pm 4a^{5.5} or even x + a = 16a^3 as there is evi May see the correct x + a = 10^{(\log 4 + 3\log a)} so x = -a + 10^{(\log 4 + 3\log a)} we by the answer in the scheme.A1: Do not allow x = \pm 4a^3 - a for accuracy mark. You may see the M1: Applying the subtraction or addition law of logarithms correctly into one log term in yM1: Uses \log_3 3^2 = 2 3^{rd} M1: Obtains correct linear equation in y usually the one in the schacts. A1: Do not allow x = \pm 16a^3 - a for accuracy mark. You may see the M1: Applying the subtraction or addition law of logarithms correctly into one log term in yM1: Uses \log_3 3^2 = 2 3^{rd} M1: Obtains correct linear equation in y usually the one in the schacts is y = \frac{10}{9}b or correct equivalent after completely correct word Special case:\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2 is M0 unless clearly crossed out and replaced by the order of the schact of the schace of the$	Uses $\log_3 3^2 = 2$	M1
Way 2 Way 2 Or: $\log_3(9y+b) = \log_3 9 + \log_3(2y-b)$ $\log_3(9y+b) = \log_3 9(2y-b)$ (9y+b) = 9(2y-b) $\Rightarrow y = \frac{10}{9}b$ Multiplies across and m (i) I st M1: Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a qu correct. The marks is for $x + a = \sqrt{16a^6}$ is so allow $x + a = \pm 4$ $x + a = 4a^4$ or $x + a = \pm 4a^{5.5}$ or even $x + a = 16a^3$ as there is evi May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ w by the answer in the scheme. A1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see th M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the sch A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the	ies across and makes y the subject	M1
(i) $\frac{\log (9y + b) = \log_3 9(2y - b)}{(9y + b) = 9(2y - b) \Rightarrow y = \frac{10}{9}b}$ Multiplies across and m (i) $\frac{1^{st} M1: \text{Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a que correct. The marks is for x + a = \sqrt{16a^6} is us so allow x + a = \pm 4a^{x} or x + a = \pm 4a^{5.5} or even x + a = 16a^3 as there is evi May see the correct x + a = 10^{(\log 4 + 3\log a)} so x = -a + 10^{(\log 4 + 3\log a)} we by the answer in the scheme.A1: Do not allow x = \pm 4a^3 - a for accuracy mark. You may see the M1: Applying the subtraction or addition law of logarithms correctly into one log term in yM1: Uses \log_3 3^2 = 23^{rd} M1: Obtains correct linear equation in y usually the one in the scheme. A1cso: y = \frac{10}{9}b or correct equivalent after completely correct work Special case:\frac{\log_3(9y + b)}{\log_3(2y - b)} = 2 is M0 unless clearly crossed out and replaced by the subtract of the scheme is the subtract in the scheme is $		A1cso (4)
(i) Notes (i) Notes (ii) Notes (ii) Notes (ii) Notes (ii) Notes (ii) Notes (ii) Notes (ii) Notes (ii) Notes (ii) Notes (iii) Notes (ii	2 nd M mark	M1
(i) Notes (i) 1 st M1: Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a qu correct. The marks is for $x + a = \sqrt{16a^6}$ isw so allow $x + a = \pm 4$ $x + a = 4a^4$ or $x + a = \pm 4a^{5.5}$ or even $x + a = 16a^3$ as there is evi May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ w by the answer in the scheme. A1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see th M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the sc A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the	1 st M mark	M1
(i) 1 st M1: Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a que correct. The marks is for $x + a = \sqrt{16a^6}$ is so allow $x + a = \pm 4a^4$ or $x + a = \pm 4a^{5.5}$ or even $x + a = 16a^3$ as there is evi May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ we by the answer in the scheme. A1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see the M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the set A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the subtraction of the set A1cso is $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the set A1cso is $\frac{\log_3(2y-b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the set A1cso is $\frac{\log_3(2y-b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the set A1cso is $\frac{\log_3(2y-b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the set A1cso is $\frac{\log_3(2y-b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the set A1cso is $\frac{\log_3(2y-b)}{\log_3(2y-b)} = 2$ is M1 where $\frac{\log_3(2y-b)}{\log_3(2y-b)} = 2$ is M1 wher	nakes y the subject	M1 A1cso (4)
(i) 1^{st} M1: Applies power law of logarithms correctly to one side of the M1: Correct log work in correct order. If they square and obtain a que correct. The marks is for $x + a = \sqrt{16a^6}$ is so allow $x + a = \pm 4a^4$ or $x + a = \pm 4a^{5.5}$ or even $x + a = 16a^3$ as there is evi May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ we by the answer in the scheme. A1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see the M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the set A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the subtraction of the set A1cso is $y = \frac{10}{3} \log 3(2y-b)$.		[7]
(ii) $x + a = 4a^{4} \text{ or } x + a = \pm 4a^{5.5} \text{ or even } x + a = 16a^{3} \text{ as there is evidential}$ May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ we by the answer in the scheme. A1: Do not allow $x = \pm 4a^{3} - a$ for accuracy mark. You may see the M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_{3} 3^{2} = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the set A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_{3}(9y+b)}{\log_{3}(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the set of		be
(ii) May see the correct $x + a = 10^{(\log 4 + 3\log a)}$ so $x = -a + 10^{(\log 4 + 3\log a)}$ we by the answer in the scheme. A1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see the M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the set A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the	$4a^3$ for Method mark. Also	o allow
by the answer in the scheme. A1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see the M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the set A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the	vidence of attempted square	root.
(ii) A1: Do not allow $x = \pm 4a^3 - a$ for accuracy mark. You may see the M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the set A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the set A1cso is $y = \frac{10}{2}b = 2$.	which gains M1A0 unless f	followed
(ii) M1: Applying the subtraction or addition law of logarithms correctly into one log term in y M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the set A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the		1)
M1: Uses $\log_3 3^2 = 2$ 3^{rd} M1: Obtains correct linear equation in y usually the one in the set A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the		- 1) o.e.
A1cso: $y = \frac{10}{9}b$ or correct equivalent after completely correct work Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the		
Special case: $\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the second s	· · ·	
$\frac{\log_3(9y+b)}{\log_3(2y-b)} = 2$ is M0 unless clearly crossed out and replaced by the second se	ork.	
	the correct $\log_3 \frac{(9y+b)}{(2y-b)}$	= 2
Candidates may then write $\frac{(9y+b)}{(2y-b)} = 3^2$ and proceed to the <i>correct</i>		
the answer requires a completely correct solution.		

Question Number	Scheme	Marks
8(i)	Two Ways of answering the question are given in part (i)	
Way 1	$\log_3\left(\frac{3b+1}{a-2}\right) = -1$ or $\log_3\left(\frac{a-2}{3b+1}\right) = 1$ Applying the subtraction law of logarithms	M1
	$\frac{3b+1}{a-2} = 3^{-1} \left\{ = \frac{1}{3} \right\} \text{ or } \left(\frac{a-2}{3b+1} \right) = 3$ Making a correct connection between log base 3 and 3 to a power.	M1
	$\{9b+3=a-2 \Rightarrow\} \ b=\frac{1}{9}a-\frac{5}{9}$ $b=\frac{1}{9}a-\frac{5}{9}$ or $b=\frac{a-5}{9}$	A1 oe
	In Way 2 a correct connection between log base 3 and "3 to a power" is used before applying the subtraction or addition law of logs	[3]
(i) Way 2	Either $\log_3(3b+1) - \log_3(a-2) = -\log_3 3$ or $\log_3(3b+1) + \log_3 3 = \log_3(a-2)$	2 nd M1
	$\log_3(3b+1) = \log_3(a-2) - \log_3 3 = \log_3\left(\frac{a-2}{3}\right) \text{ or } \log_3 3(3b+1) = \log_3(a-2)$	1 st M1
	${3b+1=\frac{a-2}{3}} b = \frac{1}{9}a - \frac{5}{9}$	A1
		[3]
	Five Ways of answering the question are given in part (ii)	
(ii)	$32(2^{2x}) - 7(2^x) = 0$ Deals with power 5 correctly giving ×32	M1
Way 1 See also common approach below in notes	So, $2^x = \frac{7}{32}$ or $y = \frac{7}{32}$ or $awrt 0.219$	A1 oe dM1
	$x \log 2 = \log\left(\frac{7}{32}\right)$ or $x = \frac{\log\left(\frac{7}{32}\right)}{\log 2}$ or $x = \log_2\left(\frac{7}{32}\right)$ A valid method for solving $2^x = \frac{7}{32}$ Or $2^x = k$ to achieve $x = \dots$	
	x = -2.192645 awrt -2.19	A1 [4]
	Begins with $2^{2x+5} = 7(2^x)$ (for Way 2 and Way 3) (see notes below)	
(ii) Way 2	Correct application of $(2x + 5)\log 2 = \log 7 + x\log 2$ either the power law or addition law of logarithms.	M1
	the power and addition laws of logarithms.	A1
	$2x \log 2 + 5 \log 2 = \log 7 + x \log 2$ $\Rightarrow x = \frac{\log 7 - 5 \log 2}{\log 2}$ Multiplies out, collects x terms to achieve $x =$	dM1
	x = -2.192645 awrt -2.19	A1 [4]
	Evidence of \log_2 and either $2^{2x+5} \rightarrow 2x+5$	
(ii) Way 3	$2x + 5 = \log_2 7 + x$ or $7(2^x) \to \log_2 7 + \log_2(2^x)$	M1
-	$2x + 5 = \log_2 7 + x \text{ oe.}$	A1
	$2x - x = \log_2 7 - 5$ Collects x terms to achieve $x =$	dM1
	$\Rightarrow x = \log_2 7 - 5$	

www.yesterdaysmathsexam.co	cm
----------------------------	----

Question Number	Scheme	Marks
9(i)	$2\log_{10}(x-2) - \log_{10}(x+5) = 0 \Longrightarrow \log_{10}(x-2)^2 = \log_{10}(x+5)$	M1
	$\Rightarrow (x-2)^2 = (x+5)$	M1
	$\Rightarrow x^2 - 5x - 1 = 0$	A1
	$x = \frac{5 \pm \sqrt{29}}{2} \Longrightarrow x = \frac{5 + \sqrt{29}}{2} \text{ only}$	M1,A1
		(5)
(ii)	$\log_p(4y+1) - \log_p(2y-2) = 1 \Longrightarrow \log_p\left(\frac{4y+1}{2y-2}\right) = \log_p p$	M1, M1
	$\Rightarrow \left(\frac{4y+1}{2y-2}\right) = p$	A1
	$\Rightarrow 4y + 1 = 2py - 2p \Rightarrow y = \frac{1 + 2p}{2p - 4}$	M1A1
		(5) (10 marks)
(i)		(10 marks)

(i)

M1 Use of the power law of logs

M1 For 'undoing' the logs by either setting
$$\log_{10} \dots = \log_{10} \dots$$
 or using the subtraction law and $0 = \log_{10} 1$

A1 A correct simplified quadratic
$$x^2 - 5x - 1 = 0$$

M1 A correct attempt to find a solution to a 3TQ of equivalent difficulty (ie no factors). Allow formula, completing the square and use of a calculator giving exact or decimal answers

A1 cso
$$\frac{5+\sqrt{29}}{2}$$
 or exact simplified equivalent without extra answers.

- (ii)
- M1 Use of subtraction (or addition) law of logs
- M1 For using $1 = \log_p p$ or equivalent in an attempt to get an equation not involving logs.

$$\log_p(4y+1) - \log_p(2y-2) = 1 \Rightarrow (4y+1) - (2y-2) = p \text{ implies this and scores M0 M1.}$$

- A1 A correct equation in p and y not involving logs. Accept $\left(\frac{4y+1}{2y-2}\right) = p^1$
- M1 Score for an attempt to change the subject. This must include cross multiplication, collection of terms in *y*, followed by factorisation of the *y* term.

A1 cso
$$y = \frac{1+2p}{2p-4}$$
 or equivalent such as $y = \frac{-1-2p}{4-2p}$

Special cases in (i): Case 1 Allow the subtraction law either way around as the rhs of the equation will be 1

Case 2
$$\log_{10} \frac{(x-2)^2}{(x+5)} = 0 \Rightarrow \frac{(x-2)^2}{(x+5)} = 0 \Rightarrow (x-2)^2 = (x+5) \Rightarrow x^2 - 5x - 1 = 0$$

$$\Rightarrow x = \frac{5 + \sqrt{29}}{2} \text{ only will be awarded M1 M0 A1 M1 A0}$$

Special cases in (ii): $\log_p(4y+1) - \log_p(2y-2) = 1 \Rightarrow \frac{\log_p(4y+1)}{\log_p(2y-2)} = \log_p p \Rightarrow \left(\frac{4y+1}{2y-2}\right) = p^1$ $\Rightarrow 4y+1 = 2py-2p \Rightarrow y = \frac{1+2p}{2p-4}$ will be awarded M0 M1A1 M1 A0|

Question Number	Scheme		Marks
5 (a)(i)		(\mathbf{r})	
5 (a)(l)		M1: $\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 9$ or	
	$\log \left(x \right)$ log x log 0 x 2	$\log_3\left(\frac{x}{9}\right) = \log_3 x + \log_3 \frac{1}{9}$	
	$\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 9 = y - 2$	Correct use of the subtraction rule or	M1A1
		addition rule. Ignore the presence or absence of a base and any spurious	
		"= 0"	-
	An answer left as log	A1: $y-2$	
	An answer left as \log_3		
	Note that $\log_3\left(\frac{x}{9}\right) = \log_3 x - \log_3 x$		
(ii)	$\log_{3}\sqrt{x} = \log_{3}x^{\frac{1}{2}} = \frac{1}{2}\log_{3}x = \frac{1}{2}y$	$\frac{1}{2}y$ or equivalent	B1
	<i></i>		(3)
(b)	$2\log_{3}\left(\frac{x}{9}\right) - \log_{3}\sqrt{x} = 2 \Longrightarrow 2(y-2) - \frac{1}{2}y = 2$		
	Uses their answers from part (a) to crea	ate a linear equation in y (condone	M1
	poor use of brackets e.g. $2(y-2) = 2y - 2y$	2 and also the slip $(y-2) - \frac{1}{2}y = 2$	
	for this m	nark)	
	$\Rightarrow y = 4$	Correct value for <i>y</i> .	A1
	Note that arriving at $(y-2)^2 - \frac{1}{2}y = 2$ ab	oove scores M0 (not linear) but does	
	have a solution $y = 4$ so look out for y		
	$\log_3 x = 4 \Longrightarrow x = 3^4$	Correct method for undoing log. Dependent on the first M	d M1
	$\Rightarrow x = 81$	cao	A1
			(4)
			(7 marks)
	$2\log_3\left(\frac{x}{9}\right) - \log_3\sqrt{x}$	$=\log_{3}\left(\frac{\left(x/9\right)^{2}}{\sqrt{x}}\right)$	
	or		M1
	$2\log_{3}\left(\frac{x}{9}\right) - \log_{3}\sqrt{x} = 2\log_{3}x - 21$	$\log 9 - \log \sqrt{x} = \log \frac{x^2}{x} +$	
		v	
	Combines two log terms in x corre	ectly to obtain a single log term	
Alt 1 (b)	$\log_{3}\left(\frac{\left(x/9\right)^{2}}{\sqrt{x}}\right) = 2$		
		Correct equation	A1
	$\left(\begin{array}{c} \mathbf{r}^2 \end{array} \right)$	Concer equation	711
	$\log_3\left(\frac{x^2}{\sqrt{x}}\right) = 6$		
	$\left(\frac{\left(x/9\right)^2}{\sqrt{x}}\right) = 3^2 \text{ or } \left(\frac{x^2}{\sqrt{x}}\right) = 3^6$	Correct method for undoing log.	d M1
		Dependent on the first M	
	$\Rightarrow x = 81$	cao	Al

Question	Scheme	Marks
2.	(a) $2x \log 7 = \log 14$ or $x \log 49 = \log 14$ or $2x = \log_7 14$	M1
	$x = \frac{\log 14}{2\log 7} = \text{awrt } 0.678$	M1A1 (3)
	(b) $3x+1=5^{-2}$ So $x = -\frac{8}{25}$ or -0.32	M1 A1 (2)
		5 marks
	Notes	
M1: Make	logs and brings down x correctly as x the subject correctly. This must follow a method that did involve taking logs pt awrt 0.678 (N.B. Correct answer with no working implies two previous marks)	
	powers correctly to undo log. Accept $3x+1=5^{-2}$ or equivalent such as $3x+1=0.04$ ct answer (Correct answer implies method mark). Accept -0.320	

Question Number	Scheme	Marks
13 (a)	$2\log_2 y = 5 - \log_2 x \Longrightarrow \log_2 y^2 = 5 - \log_2 x$	M1
	$\Rightarrow \log_2 y^2 = \log_2 32 - \log_2 x \Rightarrow \log_2 y^2 = \log_2 \left(\frac{32}{x}\right)$ $\Rightarrow y^2 = \frac{32}{x}$	M1A1
(b)	$\log_x y = -3 \Longrightarrow y = x^{-3}$	(3) M1
	Sub $y = x^{-3}$ into $y^2 = \frac{32}{x} \Rightarrow x^{-6} = \frac{32}{x} \Rightarrow x^5 = \frac{1}{32} \Rightarrow x = \frac{1}{2}$	M1A1
	Sub $x = \frac{1}{2}$ into either eqn $\Rightarrow y = 8$	M1A1
		(5) (8 marks)
Alt (b)	Sub $y^2 = \frac{32}{x}$ into $\log_x y = -3 \Rightarrow \log_x \sqrt{\frac{32}{x}} = -3$	2nd M1
	$\Rightarrow \sqrt{\frac{32}{x}} = x^{-3}$	1st M1
	$\Rightarrow x^5 = \frac{1}{32} \Rightarrow x = \frac{1}{2}$	A1
Eg Alt No M1 Uso Aw or	es one correct log law. Uses the index law and writes $2\log_2 y = \log_2 y^2$. ernatively writes 5 as $\log_2 32$. This may well come from $\log_2 = 5 \Rightarrow = 32$ the that $2\log_2 y + \log_2 x = 2\log_2 xy$ is M0 es two correct log laws ard for $\log_2 y^2 = \log_2 (32) - \log_2 x$ $\log_2 x + \log_2 y^2 = 5 \Rightarrow \log_2 xy^2 = 5$	
	ceeds correctly to $y^2 = \frac{32}{x}$	
Thi M1 Cor	does the log in the second equation $\log_x y = -3 \Rightarrow y = x^{-3}$ s may well appear later in the solution mbines both equations to form a single equation in one variable. $\frac{1}{2}$ or $y = 8$. Condone a solution $y = \pm 8$ for this mark	
	postitutes their $x = \frac{1}{2}$ into an equation to find y.	
	ernatively substitutes their $y=8$ into an equation to find x $\frac{1}{2}$ and $y=8$ only. Note $x = \frac{1}{2}$ and $y = \pm 8$ is A0	
SC. If a ca	ndidate uses $y = \frac{k}{r}$ with $\log_x y = -3$ this can potentially score M1: Undoing log	s, M0: as
combining	the equations has been made easier, A0: M1: If they substitute their x to find y y A0: scoring 10010	

Question Number	Scheme	Marks
14(i)	$\log_a x + \log_a 3 = \log_a 27 - 1 \text{so} \log_a \frac{3x}{27} = -1$ Or $\log_a x + \log_a 3 = \log_a 27 - \log_a a \text{so} \log_a 3x = \log_a \frac{27}{a}$ Or $\log_a x + 1 = \log_a 27 - \log_a 3 = \log_a 9 \text{so} \log_a ax = \log_a 9$	M1 A1
	$\frac{3x}{27} = a^{-1}$ $x = 9a^{-1} \text{ or } \frac{9}{-1}$	M1
	$x = 9a^{-1}$ or $\frac{9}{a}$	A1
		[4]
(ii)	$x^2 - 7x + 12 = 0$ and attempt to solve to give $x =$ or $\log_5 y =$ (implied by correct answers)	M1
	x (or $\log_5 y$) = 3 and 4	A1
	$y = 5^3$ or 5^4	dM1
	y = 125 and 625	A1
		[4]
		8 marks
(1)	Notes	
(i)	M1: Uses sum or difference of logs correctly e.g. $\log x + \log 3 = \log 3x$ or $\log 27 - \log 3 = \log 9$ or $\log 27 - \log x = \log \frac{27}{x}$ etc.	
	or writes 1 as $\log_a a$	
	A1: Uses two rules correctly to obtain correct log equationM1: Removes logs correctly to obtain an equation connecting <i>x</i> and <i>a</i>A1: Correct simplified answer	
	Note that some candidates interpret $\log_a 27 - 1$ as $\log_a (27 - 1)$. This can score a maximum of	1 out of 4 if
	they have $\log x + \log 3 = \log 3x$	
	Note that $\log_a x + \log_a 3 = \log_a 27 - 1$ so $\frac{\log_a 3x}{\log_a 27} = -1 \Rightarrow \frac{3x}{27} = a^{-1}$ etc. scores M1A0M0A0	
	Note that $\log_a x + \log_a 3 = \log_a 27 - 1$ so $\frac{\log_a x \log_a 3}{\log_a 27} = -1 \Rightarrow \frac{3x}{27} = a^{-1}$ etc. scores no marks	
(ii)	 M1: Recognise and attempt to solve quadratic A1: Obtain both 3 and 4 (Both correct implies M1A1) dM1: Uses powers correctly to find a value for y (Dependent on first method mark) 	
	A1: Both values correct	