

Question	Scheme	Marks	AOs
11 (a)	35 (km ${ }^{2}$)	B1	3.4
		(1)	
(b)	Sets their $60=80-45 \mathrm{e}^{14 c} \Rightarrow 45 \mathrm{e}^{14 c}=20$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & \hline \end{aligned}$
	$\Rightarrow c=\frac{1}{14} \ln \left(\frac{20}{45}\right)=\cdots-0.0579$	dM1	3.1b
	$A=80-45 \mathrm{e}^{-0.0579 t}$	A1	3.3
		(4)	
(c)	Gives a suitable answer - The maximum area covered by trees is only $80 \mathrm{~km}^{2}$ - The " 80 " would need to be " 100 " - Substitutes 100 into the equation of the model and shows that the formula fails with a reason eg. you cannot take a log of a negative number	B1	3.5b
		(1)	
(6 marks)			

(a)

B1: Uses the equation of the model to find that $35\left(\mathrm{~km}^{2}\right)$ of the reserve was covered on $1^{\text {st }}$ January 2005. Do not accept eg. $35 \mathrm{~m}^{2}$
(b)

M1: Sets their $60=80-45 \mathrm{e}^{14 c} \Rightarrow A \mathrm{e}^{14 c}=B$
A1: $45 \mathrm{e}^{14 c}=20$ or equivalent.
dM1: A full and careful method using precise algebra, correct log laws and a knowledge that \mathbf{e}^{x} and $\ln x$ are inverse functions and proceeds to a value for c.

A1: Gives a complete equation for the model $A=80-45 \mathrm{e}^{-0.0579 t}$
(c)

B1: Gives a suitable interpretation (See scheme)

Question	Scheme		Marks	AOs
5 (a)	Identifies one of the two errors "You cannot use the subtraction law without dealing with the 2 first" " They undo the logs incorrectly. It should be $x=2^{3}=8$ "		B1	2.3
	Identifies both errors. See above.		B1	2.3
			(2)	
(b)	$\log _{2}\left(\frac{x^{2}}{\sqrt{x}}\right)=3$	$\frac{3}{2} \log _{2}(x)=3$	M1	1.1b
	$x^{\frac{3}{2}}=2^{3}$ or $\frac{x^{2}}{\sqrt{x}}=2^{3}$	$x=2^{2}$	M1	1.1b
	$x=\left(2^{3}\right)^{\frac{2}{3}}=4$	$x=4$	A1	1.1b
			(3)	
(5 marks)				
(a) B1: States one of the two errors. Error One: Either in words states 'They cannot use the subtraction law without dealing with the 2 first' or writes ' that line 2 should be $\log _{2}\left(\frac{x^{2}}{\sqrt{x}}\right) \quad(=3)^{\prime} \quad$ If they rewrite line two it must be correct. Allow 'the coefficient of each log term is different so we cannot use the subtraction law' Allow responses such as 'it must be $\log x^{2}$ before subtracting the logs' Do not accept an incomplete response such as "the student ignored the 2 ". There must be some reference to the subtraction law as well. Error Two: Either in words states 'They undo the log incorrectly' or writes that 'if $\log _{2} x=3$ then $x=2^{3}=8^{\prime}$ If it is rewritten it must be correct. Eg $x=\log _{2} 9$ is B0 B1: States both of the two errors. (See above) (b) M1: Uses a correct method of combining the two log terms. Either uses both the power law and the subtraction law to reach a form $\log _{2}\left(\frac{x^{2}}{\sqrt{x}}\right)=3$ oe. Or uses both the power law and subtraction to reach $\frac{3}{2} \log _{2}(x)=3$ M1: Uses correct work to "undo" the log. Eg moves from $\log _{2}\left(A x^{n}\right)=b \Rightarrow A x^{n}=2^{b}$ This is independent of the previous mark so allow following earlier error. A1: cso $x=4$ achieved with at least one intermediate step shown. Extra solutions would be A0 SC: If the "answer" rather than the "solution" is given score $1,0,0$.				

	For $p=$ awrt 63100 or $q=$ awrt 1.122	A 1	1.1 b
	For correct equations in p and $q \quad p=10^{4.8}$ and $q=10^{0.05}$	dM 1	3.1 a
	For $p=$ awrt 63100 and $q=$ awrt 1.122	A 1	1.1 b
		$\mathbf{(4)}$	
	(i) The value of the painting on 1st January 1980	B 1	3.4
	(ii) The proportional increase in value each year	B 1	3.4
	Uses $V=63100 \times 1.122^{30}$ or $\log V=0.05 \times 30+4.8$ leading to $V=$	M 1	3.4
	$=\operatorname{awrt}(£) 2000000$	A 1	1.1 b
		$\mathbf{(2)}$	

(8 marks)

Notes

(a)

M1: For a correct equation in p or q This is usually $p=10^{4.8}$ or $q=10^{0.05}$ but may be $\log q=0.05$ or $\log p=4.8$
A1: For $p=$ awrt 63100 or $q=$ awrt 1.122
M1: For linking the two equations and forming correct equations in p and q. This is usually $p=10^{4.8}$ and $q=10^{0.05}$ but may be $\log q=0.05$ and $\log p=4.8$
A1: For $p=$ awrt 63100 and $q=$ awrt $1.122 \quad$ Both these values implies M1 M1
ALT I(a)
M1: Substitutes $t=0$ and states that $\log p=4.8$
A1: $p=$ awrt 63100
M1: Uses their found value of p and another value of t to find form an equation in q
A1: $p=\operatorname{awrt} 63100$ and $q=\operatorname{awrt} 1.122$
(b)(i)

B1: The value of the painting on 1st January 1980 (is $£ 63$ 100)
Accept the original value/cost of the painting or the initial value/cost of the painting
(b)(ii)

B1: The proportional increase in value each year. Eg Accept an explanation that explains that the value of the painting will rise 12.2% a year. (Follow through on their value of q.)
Accept "the rate" by which the value is rising/price is changing. "1.122 is the decimal multiplier representing the year on year increase in value"
Do not accept "the amount" by which it is rising or "how much" it is rising by
If they are not labelled (b)(i) and (b)(ii) mark in the order given but accept any way around as long as clearly labelled ' p is. \qquad " and " q is \qquad .."
(c)

M1: For substituting $t=30$ into $V=p q^{t}$ using their values for p and q or substituting $t=30$ into $\log _{10} V=0.05 t+4.8$ and proceeds to V
A1: For awrt either $£ 1.99$ million or $£ 2.00$ million. Condone the omission of the $£$ sign.
Remember to isw after a correct answer

Question	Scheme	Marks	AOs
$\mathbf{1 4}$ (a)	Attempts to complete the square $(x \pm 3)^{2}+(y \pm 5)^{2}=\ldots$	M1	1.1 b

Notes

(a)

M1: Attempts $(x \pm 3)^{2}+(y \pm 5)^{2}=.$.
This mark may be implied by candidates writing down a centre of $(\pm 3, \pm 5)$ or $r^{2}=25$
(i) A1: Centre $(3,-5)$
(ii) A1: Radius 5. Do not accept $\sqrt{25}$

Answers only (no working) scores all three marks

(b)

B1: Uses a sketch or their subsequent quadratic to deduce that $k=0$ is a critical value.
You may award for the correct $k<0$ but award if $k \leqslant 0$ or even with greater than symbols
M1: Substitutes $y=k x$ in $x^{2}+y^{2}-6 x+10 y+9=0$ or their $(x \pm 3)^{2}+(y \pm 5)^{2}=\ldots$ to form an equation in just x and k. It is possible to substitute $x=\frac{y}{k}$ into their circle equation to form an equation in just y and k.
A1: Correct 3TQ $\left(1+k^{2}\right) x^{2}+(10 k-6) x+9=0$ with the terms in x collected. The " $=0$ " can be implied by subsequent work. This may be awarded from an equation such as $x^{2}+k^{2} x^{2}+(10 k-6) x+9=0$ so long as the correct values of a, b and c are used in $b^{2}-4 a c \ldots 0$. FYI The equation in y and k is $\left(1+k^{2}\right) y^{2}+\left(10 k^{2}-6 k\right) y+9 k^{2}=0$ oe
M1: Attempts to find two critical values for k using $b^{2}-4 a c . . .0$ or $b^{2} . .4 a c$ where \ldots could be " $=$ " or any inequality.
dM1: Finds the outside region using their critical values. Allow the boundary to be included. It is dependent upon all previous M marks and both a and b must have been expressions in k.
Note that it is possible that the correct region could be the inside region if the coefficient of k^{2} in $4 a c$ is larger than the coefficient of k^{2} in $b^{2} \mathrm{Eg}$.
$b^{2}-4 a c=(k-6)^{2}-4 \times\left(1+k^{2}\right) \times 9>0 \Rightarrow-35 k^{2}-12 k>0 \Rightarrow k(35 k+12)<0$

Question	Scheme	Marks	AOs
14 (a)	(£)18 000	B1	3.4
		(1)	
(b)	(i) $\frac{\mathrm{d} V}{\mathrm{~d} t}=-3925 \mathrm{e}^{-0.25 t}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & \hline 3.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Sets $-3925 \mathrm{e}^{-0.25 T}=-500 \Rightarrow 3925 \mathrm{e}^{-0.25 T}=500 \quad * \quad$ cso	A1*	3.4
	(ii) $\mathrm{e}^{-0.25 T}=0.127 \ldots \Rightarrow-0.25 T=\ln 0.127 \ldots$	M1	1.1b
	$T=8.24$ (awrt)	A1	1.1b
	8 years 3 months	A1	3.2a
		(6)	
(c)	2300	B1	1.1b
		(1)	
(d)	Any suitable reason such as - Other factors affect price such as condition/mileage - If the car has had an accident it will be worth less than the model predicts - The price may go up in the long term as it becomes rare - $£ 2300$ is too large a value for a car's scrap price. Most cars scrap for around $£ 400$	B1	3.5b
		(1)	
(9 marks)			
Notes			
(a) B1: £18 000 There is no requirement to have the units (b)(i) M1: Award for making the link between gradient and rate of change. Score for attempting to differentiate V to $\frac{\mathrm{d} V}{\mathrm{~d} t}=k \mathrm{e}^{-0.25 t}$ An attempt at both sides are required. For the left hand side you may condone attempts such as $\frac{\mathrm{d} y}{\mathrm{~d} x}$ A1: Achieves $\frac{\mathrm{d} V}{\mathrm{~d} t}=-3925 \mathrm{e}^{-0.25 t}$ or $\frac{\mathrm{d} V}{\mathrm{~d} t}=15700 \times-0.25 \mathrm{e}^{-0.25 t}$ with both sides correct $\mathbf{A 1 *}$: Sets $-3925 \mathrm{e}^{-0.25 T}=-500$ oe and proceeds to $3925 \mathrm{e}^{-0.25 T}=500$ This is a given answer and to achieve this mark, all aspects must be seen and be correct. t must be changed to T at some point even if just at the end of their solution/proof SC: Award SC 110 candidates who simply write $-3925 \mathrm{e}^{-0.25 T}=-500 \Rightarrow 3925 \mathrm{e}^{-0.25 T}=500 \text { without any mention or reference to } \frac{\mathrm{d} V}{\mathrm{~d} t}$ Or $15700 \times-0.25 \mathrm{e}^{-0.25 t}=-500 \Rightarrow 3925 \mathrm{e}^{-0.25 T}=500$ without any mention or reference to $\frac{\mathrm{d} V}{\mathrm{~d} t}$ (b)(ii) M1: Proceeds from $\mathrm{e}^{-0.25 T}=A, A>0$ using \ln 's to $\pm 0.25 T=$.. Alternatively takes lns first $3925 \mathrm{e}^{-0.25 T}=500 \Rightarrow \ln 3925-0.25 T=\ln 500 \Rightarrow \pm 0.25 T=\ldots$ $\text { but } 3925 \mathrm{e}^{-0.25 T}=500 \Rightarrow \ln 3925 \times-0.25 T=\ln 500 \Rightarrow \pm 0.25 T=\ldots \text { is } \mathrm{M} 0$ A1: $T=$ awrt 8.24 or $-\frac{1}{0.25} \ln \left(\frac{20}{157}\right)$ Allow $t=$ awrt 8.24			

Question	Scheme	Marks	AOs
8 (a)	Temperature $=83^{\circ} \mathrm{C}$	B1	3.4
		(1)	
(b)	$18+65 \mathrm{e}^{-\frac{t}{8}}=35 \Rightarrow 65 \mathrm{e}^{-\frac{t}{8}}=17$	M1	1.1b
	$t=-8 \ln \left(\frac{17}{65}\right) \quad \ln 65-\frac{t}{8}=\ln 17 \Rightarrow t=\ldots$	dM1	1.1b
	$t=10.7$	A1	1.1b
		(3)	
(c)	States a suitable reason - As $t \rightarrow \infty, \theta \rightarrow 18$ from above. - The minimum temperature is $18^{\circ} \mathrm{C}$	B1	2.4
		(1)	
(d)	$A+B=94$ or $A+B \mathrm{e}^{-1}=50$	M1	3.4
	$A+B=94$ and $A+B \mathrm{e}^{-1}=50$	A1	1.1 b
	Full method to find at least a value for A	dM1	2.1
	Deduces $\quad \mu=\frac{50 \mathrm{e}-94}{\mathrm{e}-1}$ or accept $\mu=$ awrt 24.4	A1	2.2a
		(4)	
(9 marks)			

Notes

(a)

B1: Uses the model to state that the temperature $=83^{\circ} \mathrm{C}$ Requires units as well
(b)

M1: Uses the information and proceeds to $P \mathrm{e}^{ \pm \frac{t}{8}}=Q$ condoning slips
dM1: A full method using correct \log laws and a knowledge that e^{x} and $\ln x$ are inverse functions. This cannot be scored from unsolvable equations, e.g $P>0, Q<0$. Condone one error in their solution.

A1: $\quad t=$ awrt 10.7
(c)

B1: States a suitable reason with minimal conclusion

- As $t \rightarrow \infty, \theta \rightarrow 18$ from above.
- The minimum temperature is $18^{\circ} \mathrm{C}$ (so it cannot drop to $15^{\circ} \mathrm{C}$)
- Substitutes $\theta=15$ (or a value between 15 and 18) into $18+65 \mathrm{e}^{-\frac{t}{8}}=15$ (may be impied by $15-18=-3$ or similar) and makes a statement that $\mathrm{e}^{-\frac{t}{8}}$ cannot be less than zero or else that $\ln (-v e)$ is undefined and hence $\theta \neq 15$. All calculations must be correct
- (According to the model) the room temperature is $18^{\circ} \mathrm{C}$ (so cannot fall below this)

(a) Condone $\log _{10}$ written \log or \lg written throughout the question

B1: Scored for showing that $\log _{10} V=0.072 t+2.379$ can be written in the form $V=a b^{t}$ or vice versa
Either starts with $\log _{10} V=0.072 t+2.379$ (may be implied) and shows lines

$$
V=10^{0.072 t+2.379} \text { and } V=10^{0.072 t} \times 10^{2.379}
$$

Or starts with $V=a b^{t}$ (implied) and shows the lines

$$
\log _{10} V=\log _{10} a+\log _{10} b^{t} \text { and } \log _{10} V=\log _{10} a+t \log _{10} b
$$

M1: For a correct equation in a or a correct equation in b
A1: Finds either constant. Allow $a=$ awrt 240 or $b=$ awrt 1.2 following a correct method

A1: Correct solution: Look for $V=239 \times 1.18^{t}$ or $a=239, b=1.18$
Note that this is NOT awrt
(b)

B1: See scheme. Condone not seeing total. Do not allow number of views at the start or similar.
(c)

M1: Substitutes $t=20$ in either their $V=239 \times 1.18^{t}$ or $\log _{10} V=0.072 t+2.379$ and uses a correct method to find V

A1: Awrt 6500 or 6600

Question	Scheme		Marks	AOs
14(a)	$\log _{10} P=m t+c$		M1	1.1b
	$\log _{10} P=\frac{1}{200} t+5$		A1	1.1b
			(2)	
(b)	Way 1: Way 2: As $P=a b^{t}$ then As $\log _{10} P=\frac{t}{200}+5$ then $\log _{10} P=t \log _{10} b+\log _{10} a$ $P=10^{\left(\frac{t}{200}+5\right)}=10^{5} 10^{\left(\frac{t}{200}\right)}$		M1	2.1
	$\log _{10} b=\frac{1}{200}$ or $\log _{10} a=5$	$a=10^{5}$ or $b=10^{\left(\frac{1}{200}\right)}$	M1	1.1b
	So $a=100000$ or $b=1.0116$		A1	1.1b
	Both $a=100000$ and $b=1.0116$ (awrt 1.01)		A1	1.1b
			(4)	
(c)(i)	The initial population		B1	3.4
(c)(ii)	The proportional increase of population each year		B1	3.4
			(2)	
(d)(i)	300000 to nearest hundred thousand		B1	3.4
(d)(ii)	Uses $200000=a b^{t}$ with their values of a and b or $\log _{10} 200000=\frac{1}{200} t+5$ and rearranges to give $t=$		M1	3.4
	60.2 years to 3 sf		A1ft	1.1b
			(3)	
(e)	Any two valid reasons- e.g. - 100 years is a long time and population may be affected by wars and disease - Inaccuracies in measuring gradient may result in widely different estimates - Population growth may not be proportional to population size - The model predicts unlimited growth		B2	3.5b
			(2)	

Question Number	Scheme	Marks
7. (i)	Use of power rule so $\log (x+a)^{2}=\log 16 a^{6}$ or $2 \log (x+a)=2 \log 4 a^{3}$ or $\log (x+a)=\log \left(16 a^{6}\right)^{\frac{1}{2}}$ Removes logs and square roots, or halves then removes logs to give $(x+a)=4 a^{3}$ Or $x^{2}+2 a x+a^{2}-16 a^{6}=0$ followed by factorisation or formula to give $x=\sqrt{16 a^{6}}-a$	M1 M1
	$(x=) 4 a^{3}-a \quad$ (depends on previous M's and must be this expression or equivalent)	A1cao (3)
(ii) Way 1	$\log _{3} \frac{(9 y+b)}{(2 y-b)}=2$ Applies quotient law of logarithms	M1
	$\frac{(9 y+b)}{(2 y-b)}=3^{2}$ Uses $\log _{3} 3^{2}=2$	M1
	$(9 y+b)=9(2 y-b) \Rightarrow y=\quad$ Multiplies across and makes y the subject	M1
	$\frac{10}{9} b$	A1cso (4)
Way 2	Or $: \log _{3}(9 y+b)=\log _{3} 9+\log _{3}(2 y-b) \quad 2^{\text {nd }} \mathrm{M}$ mark	M1
	$\log _{3}(9 y+b)=\log _{3} 9(2 y-b) \quad \quad 1^{\text {st }} \mathrm{M}$ mark	M1
	$(9 y+b)=9(2 y-b) \Rightarrow y=\frac{10}{9} b \quad$ Multiplies across and makes y the subject	M1 A1cso
(i)	Notes ${ }^{\text {st }} \mathrm{M} 1$: Applies power law of logarithms correctly to one side of the equation M1: Correct log work in correct order. If they square and obtain a quadratic the algebra should be	
	M1: Correct \log work in correct order. If they square and obtain a quadratic the algebra should correct. The marks is for $x+a=\sqrt{16 a^{6}}$ isw so allow $x+a= \pm 4 a^{3}$ for Method mark. Also $x+a=4 a^{4}$ or $x+a= \pm 4 a^{5.5}$ or even $x+a=16 a^{3}$ as there is evidence of attempted square May see the correct $x+a=10^{(\log 4+3 \log a)}$ so $x=-a+10^{(\log 4+3 \log a)}$ which gains M1A0 unless by the answer in the scheme.	allow root. ollowed
	M1: Applying the subtraction or addition law of logarithms correctly to make two log terms into one log term in y	
(ii)	M1: Uses $\log _{3} 3^{2}=2$	
	$3^{\text {rd }}$ M1: Obtains correct linear equation in y usually the one in the scheme and attempts $y=$	
	$\frac{\log _{3}(9 y+b)}{\log _{3}(2 y-b)}=2$ is M0 unless clearly crossed out and replaced by the correct $\log _{3} \frac{(9 y+b)}{(2 y-b)}=$	
	Candidates may then write $\frac{(9 y+b)}{(2 y-b)}=3^{2}$ and proceed to the correct answer - allow M0M1M1A0 as	

Question Number	Scheme	Marks
8(i)	Two Ways of answering the question are given in part (i)	
Way 1	$\log _{3}\left(\frac{3 b+1}{a-2}\right)=-1 \quad$ or $\log _{3}\left(\frac{a-2}{3 b+1}\right)=1 \quad$ Applying the subtraction law of logarithms	M1
	$\frac{3 b+1}{a-2}=3^{-1}\left\{=\frac{1}{3}\right\}$ or $\left(\frac{a-2}{3 b+1}\right)=3 \quad \begin{gathered}\text { Making a correct connection between } \\ \text { log base } 3 \text { and } 3 \text { to a power. }\end{gathered}$	M1
	$\{9 b+3=a-2 \Rightarrow\}=\frac{1}{9} a-\frac{5}{9} \quad b=\frac{1}{9} a-\frac{5}{9}$ or $b=\frac{a-5}{9}$	A1 oe
		[3]
	In Way 2 a correct connection between log base 3 and " 3 to a power" is used before applying the subtraction or addition law of logs	
$\begin{gathered} \text { (i) } \\ \text { Way } 2 \end{gathered}$	Either $\log _{3}(3 b+1)-\log _{3}(a-2)=-\log _{3} 3 \quad$ or $\log _{3}(3 b+1)+\log _{3} 3=\log _{3}(a-2)$	$2^{\text {nd }} \mathrm{M} 1$
	$\log _{3}(3 b+1)=\log _{3}(a-2)-\log _{3} 3=\log _{3}\left(\frac{a-2}{3}\right)$ or $\log _{3} 3(3 b+1)=\log _{3}(a-2)$	$1^{\text {st }}$ M1
	$\left\{3 b+1=\frac{a-2}{3}\right\} \quad b=\frac{1}{9} a-\frac{5}{9}$	A1
		[3]
	Five Ways of answering the question are given in part (ii)	
(ii) Way 1 See also common approach below in notes	$32\left(2^{2 x}\right)-7\left(2^{x}\right)=0 \quad$ Deals with power 5 correctly giving $\times 32$	M1
	So, $\quad 2^{x}=\frac{7}{32}$$x \log 2=\log \left(\frac{7}{32}\right) \text { or } x=\frac{\log \left(\frac{7}{32}\right)}{\log 2} \text { or } x=\log _{2}\left(\frac{7}{32}\right)$	A1 oe dM1
	$x=-2.192645 \ldots$	A1
		[4]
	Begins with $2^{2 x+5}=7\left(2^{x}\right)$ (for Way 2 and Way 3) (see notes below)	
$\begin{gathered} \text { (ii) } \\ \text { Way } 2 \end{gathered}$	Correct application of $(2 x+5) \log 2=\log 7+x \log 2$ either the power law or addition law of logarithms	M1
	Correct result after applying the power and addition laws of logarithms.	A1
	$\begin{aligned} & 2 x \log 2+5 \log 2=\log 7+x \log 2 \\ \Rightarrow & x=\frac{\log 7-5 \log 2}{\log 2} \end{aligned}$ Multiplies out, collects x terms to achieve $x=\ldots$	dM1
	$x=-2.192645 \ldots$	A1
		[4]
(ii) Way 3	$2 x+5=\log _{2} 7+x$ E	M1
		A1
	$\begin{aligned} & 2 x-x=\log _{2} 7-5 \\ & \Rightarrow x=\log _{2} 7-5 \end{aligned}$	dM1
	$x=-2.192645 .$.	A1
		[4]

Question Number	Scheme	Marks
9(i)	$2 \log _{10}(x-2)-\log _{10}(x+5)=0 \Rightarrow \log _{10}(x-2)^{2}=\log _{10}(x+5)$	M1
	$\Rightarrow(x-2)^{2}=(x+5)$	M1
	$\Rightarrow x^{2}-5 x-1=0$	A1
	$x=\frac{5 \pm \sqrt{29}}{2} \Rightarrow x=\frac{5+\sqrt{29}}{2} \text { only }$	M1,A1
		(5)
(ii)	$\log _{p}(4 y+1)-\log _{p}(2 y-2)=1 \Rightarrow \log _{p}\left(\frac{4 y+1}{2 y-2}\right)=\log _{p} p$	M1, M1
	$\Rightarrow\left(\frac{4 y+1}{2 y-2}\right)=p$	A1
	$\Rightarrow 4 y+1=2 p y-2 p \Rightarrow y=\frac{1+2 p}{2 p-4}$	M1A1
		$\begin{array}{r} (5) \\ \text { (10 marks) } \\ \hline \end{array}$

(i)

M1 Use of the power law of logs
M1 For 'undoing' the logs by either setting $\log _{10} \ldots=\log _{10} \ldots$ or using the subtraction law and $0=\log _{10} 1$
A1 A correct simplified quadratic $x^{2}-5 x-1=0$
M1 A correct attempt to find a solution to a 3TQ of equivalent difficulty (ie no factors). Allow formula, completing the square and use of a calculator giving exact or decimal answers
A1 cso $\frac{5+\sqrt{29}}{2}$ or exact simplified equivalent without extra answers.
(ii)

M1 Use of subtraction (or addition) law of logs
M1 For using $1=\log _{p} p$ or equivalent in an attempt to get an equation not involving logs. $\log _{p}(4 y+1)-\log _{p}(2 y-2)=1 \Rightarrow(4 y+1)-(2 y-2)=p$ implies this and scores M0 M1.
A1 A correct equation in p and y not involving logs. Accept $\left(\frac{4 y+1}{2 y-2}\right)=p^{1}$
M1 Score for an attempt to change the subject. This must include cross multiplication, collection of terms in y, followed by factorisation of the y term.
A1 cso $y=\frac{1+2 p}{2 p-4}$ or equivalent such as $y=\frac{-1-2 p}{4-2 p}$
Special cases in (i): Case 1 Allow the subtraction law either way around as the rhs of the equation will be 1 Case $2 \log _{10} \frac{(x-2)^{2}}{(x+5)}=0 \Rightarrow \frac{(x-2)^{2}}{(x+5)}=0 \Rightarrow(x-2)^{2}=(x+5) \Rightarrow x^{2}-5 x-1=0$

$$
\Rightarrow x=\frac{5+\sqrt{29}}{2} \text { only will be awarded M1 M0 A1 M1 A0 }
$$

Special cases in (ii): $\log _{p}(4 y+1)-\log _{p}(2 y-2)=1 \Rightarrow \frac{\log _{p}(4 y+1)}{\log _{p}(2 y-2)}=\log _{p} p \Rightarrow\left(\frac{4 y+1}{2 y-2}\right)=p^{1}$
$\Rightarrow 4 y+1=2 p y-2 p \Rightarrow y=\frac{1+2 p}{2 p-4}$ will be awarded M0 M1A1 M1 A 0

Question Number	Scheme		Marks
5 (a)(i)	$\log _{3}\left(\frac{x}{9}\right)=\log _{3} x-\log _{3} 9=y-2$	$\begin{aligned} & \mathrm{M} 1: \log _{3}\left(\frac{x}{9}\right)=\log _{3} x-\log _{3} 9 \text { or } \\ & \log _{3}\left(\frac{x}{9}\right)=\log _{3} x+\log _{3} \frac{1}{9} \end{aligned}$ Correct use of the subtraction rule or addition rule. Ignore the presence or absence of a base and any spurious $"=0 "$ A1: $y-2$	M1A1
	An answer left as $\log _{3} 3^{y-2}$ scores M1A0		
	Note that $\log _{3}\left(\frac{x}{9}\right)=\log _{3} x-\log _{3} 9=y-\log _{3} 9$ scores M1A0		
(ii)	$\log _{3} \sqrt{x}=\log _{3} x^{\frac{1}{2}}=\frac{1}{2} \log _{3} x=\frac{1}{2} y$	$\frac{1}{2} y$ or equivalent	B1
			(3)
(b)	$2 \log _{3}\left(\frac{x}{9}\right)-\log _{3} \sqrt{x}=2 \Rightarrow 2(y-2)-\frac{1}{2} y=2$ Uses their answers from part (a) to create a linear equation in y (condone poor use of brackets e.g. $2(y-2)=2 y-2$ and also the slip $(y-2)-\frac{1}{2} y=2$ for this mark)		M1
	$\Rightarrow y=4$	Correct value for y.	A1
	Note that arriving at $(y-2)^{2}-\frac{1}{2} y=2$ above scores M0 (not linear) but does have a solution $y=4$ so look out for $y=4$ not being derived correctly.		
	$\log _{3} x=4 \Rightarrow x=3^{4}$	Correct method for undoing log. Dependent on the first M	dM1
	$\Rightarrow x=81$	cao	A1
			(4)
			(7 marks)
Alt 1 (b)	$2 \log _{3}\left(\frac{x}{9}\right)-\log _{3} \sqrt{x}=\log _{3}\left(\frac{(x / 9)^{2}}{\sqrt{x}}\right)$ or $2 \log _{3}\left(\frac{x}{9}\right)-\log _{3} \sqrt{x}=2 \log _{3} x-2 \log _{3} 9-\log _{3} \sqrt{x}=\log _{3} \frac{x^{2}}{\sqrt{x}}+\ldots$ Combines two log terms in \boldsymbol{x} correctly to obtain a single log term		M1
	$\begin{gathered} \log _{3}\left(\frac{(x / 9)^{2}}{\sqrt{x}}\right)=2 \\ \text { or } \\ \log _{3}\left(\frac{x^{2}}{\sqrt{x}}\right)=6 \end{gathered}$	Correct equation	A1
	$\left(\frac{(x / 9)^{2}}{\sqrt{x}}\right)=3^{2}$ or $\left(\frac{x^{2}}{\sqrt{x}}\right)=3^{6}$	Correct method for undoing log. Dependent on the first M	dM1
	$\Rightarrow x=81$	cao	A1

Question	Scheme	Marks
2.	(a) $\quad 2 x \log 7=\log 14 \quad$ or $\quad x \log 49=\log 14$ or $2 x=\log _{7} 14$ $x=\frac{\log 14}{2 \log 7}=\text { awrt } 0.678$ (b) $\quad 3 x+1=5^{-2}$ So $x=-\frac{8}{25}$ or -0.32	$\begin{aligned} & \text { M1 } \\ & \text { M1A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ (3)
		5 marks
	Notes	
(a) M1: Uses logs and brings down x correctly M1: Makes x the subject correctly. This must follow a method that did involve taking logs A1: Accept awrt 0.678 (N.B. Correct answer with no working implies two previous marks) (b) M1: Uses powers correctly to undo \log. Accept $3 x+1=5^{-2}$ or equivalent such as $3 x+1=0.04$ A1: Correct answer (Correct answer implies method mark). Accept - 0.320		

Question Number	Scheme	Marks
13 (a)	$\begin{aligned} 2 \log _{2} y=5-\log _{2} x & \Rightarrow \log _{2} y^{2}=5-\log _{2} x \\ & \Rightarrow \log _{2} y^{2}=\log _{2} 32-\log _{2} x \end{aligned} \begin{aligned} & \log _{2} y^{2}=\log _{2}\left(\frac{32}{x}\right) \\ & \Rightarrow y^{2}=\frac{32}{x} \end{aligned}$	M1 M1A1 (3)
(b)	$\log _{x} y=-3 \Rightarrow y=x^{-3}$ Sub $y=x^{-3}$ into $y^{2}=\frac{32}{x} \Rightarrow x^{-6}=\frac{32}{x} \Rightarrow x^{5}=\frac{1}{32} \Rightarrow x=\frac{1}{2}$ Sub $\quad x=\frac{1}{2}$ into either eqn $\Rightarrow y=8$	M1 M1A1 M1A1 $\text { (} 8 \text { marks) }$
Alt (b)	Sub $y^{2}=\frac{32}{x}$ into $\log _{x} y=-3 \Rightarrow \log _{x} \sqrt{\frac{32}{x}}=-3$ $\begin{aligned} & \Rightarrow \sqrt{\frac{32}{x}}=x^{-3} \\ & \Rightarrow x^{5}=\frac{1}{32} \Rightarrow x=\frac{1}{2} \end{aligned}$	2nd M1 1st M1 A1

(a)

M1 Uses one correct log law.
Eg Uses the index law and writes $2 \log _{2} y=\log _{2} y^{2}$.
Alternatively writes 5 as $\log _{2} 32$. This may well come from $\log _{2} \ldots=5 \Rightarrow \ldots=32$
Note that $2 \log _{2} y+\log _{2} x=2 \log _{2} x y$ is M0
M1 Uses two correct log laws
Award for $\log _{2} y^{2}=\log _{2}(32)-\log _{2} x$
or $\log _{2} x+\log _{2} y^{2}=5 \Rightarrow \log _{2} x y^{2}=5$
A1 Proceeds correctly to $y^{2}=\frac{32}{x}$
(b)

M1 Undoes the \log in the second equation $\log _{x} y=-3 \Rightarrow y=x^{-3}$
This may well appear later in the solution
M1 Combines both equations to form a single equation in one variable.
A1 $\quad x=\frac{1}{2}$ or $y=8$. Condone a solution $y= \pm 8$ for this mark
M1 Substitutes their $x=\frac{1}{2}$ into an equation to find y.
Alternatively substitutes their $y=8$ into an equation to find x
A1 $x=\frac{1}{2}$ and $y=8$ only. Note $x=\frac{1}{2}$ and $y= \pm 8$ is A0
SC. If a candidate uses $y=\frac{k}{x}$ with $\log _{x} y=-3$ this can potentially score M1: Undoing logs, M0: as combining the equations has been made easier, A0: M1: If they substitute their x to find y and vice versa followed by A0: scoring 10010

Question Number	Scheme	Marks
14(i)	$\begin{gathered} \quad \log _{a} x+\log _{a} 3=\log _{a} 27-1 \quad \text { so } \quad \log _{a} \frac{3 x}{27}=-1 \\ \text { Or } \log _{a} x+\log _{a} 3=\log _{a} 27-\log _{a} a \quad \text { so } \quad \log _{a} 3 x=\log _{a} \frac{27}{a} \\ \text { Or } \log _{a} x+1=\log _{a} 27-\log _{a} 3=\log _{a} 9 \quad \text { so } \quad \log _{a} a x=\log _{a} 9 \end{gathered}$	M1 A1
	$\frac{3 x}{27}=a^{-1}$	M1
	$x=9 a^{-1}$ or $\frac{9}{a}$	A1
		[4]
(ii)	$x^{2}-7 x+12=0$ and attempt to solve to give $x=\ldots$ or $\log _{5} y=\ldots$ (implied by correct answers)	M1
	$x\left(\right.$ or $\left.\log _{5} y\right)=3$ and 4	A1
	$y=5^{3}$ or 5^{4}	dM1
	$y=125$ and 625	A1
		[4]
		8 marks
	Notes	
(i)	M1: Uses sum or difference of logs correctly e.g. $\log x+\log 3=\log 3 x$ or $\log 27-\log 3=\log 9$ or $\log 27-\log x=\log \frac{27}{x}$ etc. or writes 1 as $\log _{a} a$ A1: Uses two rules correctly to obtain correct log equation M1: Removes logs correctly to obtain an equation connecting x and a A1: Correct simplified answer Note that some candidates interpret $\log _{a} 27-1$ as $\log _{a}(27-1)$. This can score a maximum of 1 out of 4 if they have $\log x+\log 3=\log 3 x$ Note that $\log _{a} x+\log _{a} 3=\log _{a} 27-1$ so $\frac{\log _{a} 3 x}{\log _{a} 27}=-1 \Rightarrow \frac{3 x}{27}=a^{-1}$ etc. scores M1A0M0A0 Note that $\log _{a} x+\log _{a} 3=\log _{a} 27-1$ so $\frac{\log _{a} x \log _{a} 3}{\log _{a} 27}=-1 \Rightarrow \frac{3 x}{27}=a^{-1}$ etc. scores no marks	
(ii)	M1: Recognise and attempt to solve quadratic A1: Obtain both 3 and 4 (Both correct implies M1A1) dM1: Uses powers correctly to find a value for y (Dependent on first method mark) A1: Both values correct	

