www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
6(a)	Angle $AOB = \frac{\pi - \theta}{2}$	B1	2.2a
	2	(1)	
(b)	Area = $2 \times \frac{1}{2}r^2 \left(\frac{\pi-\theta}{2}\right) + \frac{1}{2}(2r)^2 \theta$	M1	2.1
	$=\frac{1}{2}r^{2}\pi - \frac{1}{2}r^{2}\theta + 2r^{2}\theta = \frac{3}{2}r^{2}\theta + \frac{1}{2}r^{2}\pi = \frac{1}{2}r^{2}(3\theta + \pi)^{*}$	A1*	1.1b
		(2)	
(c)	Perimeter = $4r + 2r\left(\frac{\pi - \theta}{2}\right) + 2r\theta$	M1	3.1a
	$=4r+r\pi+r\theta$ or e.g. $r(4+\pi+\theta)$	A1	1.1b
		(2)	
	Notes	(5	marks)
(b) M1: Fully Need part (a A1*: Corr lon The (c) M1: Fully Need A1: Corre	that $\frac{180-\theta}{2}$ scores B0 correct strategy for the area using their angle from (a) appropriately. to see $2 \times \frac{1}{2}r^2 \alpha$ or just $r^2 \alpha$ where α is their angle in terms of θ from a) $+ \frac{1}{2}(2r)^2 \theta$ with or without the brackets. ect proof. For this mark you can condone the omission of the brackets is g as they are recovered in subsequent work e.g. when this term become first term must be seen expanded as e.g. $\frac{1}{2}r^2\pi - \frac{1}{2}r^2\theta$ or equivalent correct strategy for the perimeter using their angle from (a) appropriate to see $4r + 2r\alpha + 2r\theta$ where α is their angle from part (a) in terms of θ ct simplified expression	ely	
e.g. (a) $\frac{180 - \frac{1}{2}}{2}$ (b) $2\left(\frac{180}{2}\right)$	some candidates may change the angle to degrees at the start and all matrix $\frac{80\theta}{\pi}$ $\frac{-\frac{180\theta}{\pi}}{2} \left[\times \frac{1}{360} \times \pi r^2 + \frac{\theta}{360} \times \frac{180}{\pi} \times \pi (2r)^2 = \frac{1}{2} \pi r^2 - \frac{1}{2} r^2 \theta + 2r^2 \theta = \frac{1}{2} r^2 (3\theta + \frac{180\theta}{\pi} - \frac{180\theta}{\pi}) \right] \times \frac{1}{360} \times 2\pi r + \frac{180\theta}{\pi} \times \frac{1}{360} \times 2\pi (2r) = 4r + \pi r + r\theta$		vailable

Question	Scheme	Marks	AOs
3	States or uses $\frac{1}{2}r^2\theta = 11$	B1	1.1b
-	States or uses $2r + r\theta = 4r\theta$	B1	1.1b
-	Attempts to solve, full method $r =$	M1	3.1a
	$r = \sqrt{33}$	A1	1.1b
-			[4]
		(4	l marks)
Notes:			
B1: States	or uses $\frac{1}{2}r^2\theta = 11$ This may be implied with an embedded four	nd value for θ	
The initial of It cannot be Allow this Allow t Allow t	ethod to find $r =$ This involves combining the equations to elimine equations must be of the same "form" (see **) but condone slips where scored from impossible values for θ Hence only score if $0 < \theta < 2$ to be scored from equations such as $r^2\theta = 11$ and ones that simple their $2r + r\theta = 4r\theta \Longrightarrow \theta =$ then substitute this into their $\frac{1}{2}r^2\theta =$ heir $2r + r\theta = 4r\theta \Longrightarrow r\theta =$ then substitute this into their $\frac{1}{2}r^2\theta =$ heir $\frac{1}{2}r^2\theta = 11 \Longrightarrow \theta = {r^2}$ then substitute into their $2r + r\theta = 4r\theta$	then attempting to a 2π FYI $\theta = \frac{2}{3}$ ratio ify to $\dots r = \dots r\theta$ 11	idians
	$\frac{1}{2}r^{7} = \frac{1}{r^{2}}r^{7}$ then substitute into their $2r^{7} + r^{6} = 4r^{6}$ $\frac{1}{3}$ only but isw after a correct answer.	<i>) → 1 −</i>	
	puestion can be attempted using θ in degrees. r uses $\frac{\theta}{360} \times \pi r^2 = 11$		
B1: States o	r uses $2r + \frac{\theta}{360} \times 2\pi r = 4 \times \frac{\theta}{360} \times 2\pi r$		

Questi	on Scheme	Marks	AOs
3 (a)	Allow explanations such as • student should have worked in radians • they did not convert degrees to radians • 40 should be in radians • θ should be in radians • angle (or θ) should be $\frac{40\pi}{180}$ or $\frac{2\pi}{9}$ • correct formula is $\pi r^2 \left(\frac{\theta}{360}\right)$ {where θ is in degrees} • correct formula is $\pi r^2 \left(\frac{40}{360}\right)$	B1	2.3
	1 (2-)	(1)	
(b) Way 1	{Area of sector = } $\frac{1}{2} (5^2) \left(\frac{2\pi}{9}\right)$	M1	1.1b
	$= \frac{25}{9}\pi \ \{\text{cm}^2\} \text{or awrt 8.73 } \{\text{cm}^2\}$	A1	1.1b
		(2)	
(b) Way 2	2 {Area of sector = } $\pi(5^2) \left(\frac{40}{360}\right)$ = $\frac{25}{9}\pi \{\text{cm}^2\}$ or awrt 8.73 {cm}^2}	M1	1.1b
	$= \frac{25}{9}\pi \ \{\text{cm}^2\} \text{or awrt 8.73 } \{\text{cm}^2\}$	A1	1.1b
		(2)	3 marks)
	Notes for Question 3		5 marksj
(a)			
B1:	Explains that the formula use is only valid when angle <i>AOB</i> is applied in rad See scheme for examples of suitable explanations.	ians.	
(b)	Way 1		
M1:	Correct application of the sector formula using a correct value for θ in radians		
Note:	Allow exact equivalents for θ e.g. $\theta = \frac{40\pi}{180}$ or θ in the range [0.68, 0.71]		
A1*:	Accept $\frac{25}{9}\pi$ or awrt 8.73 Note: Ignore the units		
(b)	Way 2		
M1:	Correct application of the sector formula in degrees		
A1:	Accept $\frac{25}{9}\pi$ or awrt 8.73 Note: Ignore the units.		
Note:	Allow exact equivalents such as $\frac{50}{18}\pi$		
Note:	Allow M1 A1 for $500\left(\frac{\pi}{180}\right) = \frac{25}{9}\pi \{\text{cm}^2\}$ or awrt 8.73 {cm}^2}		

Question	Scheme	Marks	AOs
11 (a)	Solves $x^2 + y^2 = 100$ and $(x - 15)^2 + y^2 = 40$ simultaneously to find x or y E.g. $(x - 15)^2 + 100 - x^2 = 40 \Rightarrow x =$	M1	3.1a
	Either $\Rightarrow -30x + 325 = 40 \Rightarrow x = 9.5$ Or $y = \frac{\sqrt{39}}{2} = awrt \pm 3.12$	A1	1.1b
	Attempts to find the angle <i>AOB</i> in circle C_1 Eg Attempts $\cos \alpha = \frac{"9.5"}{10}$ to find α then ×2	M1	3.1a
	Angle $AOB = 2 \times \arccos\left(\frac{9.5}{10}\right) = 0.635 \operatorname{rads}(3\operatorname{sf}) *$	A1*	2.1
		(4)	
(b)	Attempts $10 \times (2\pi - 0.635) = 56.48$	M1	1.1b
	Attempts to find angle <i>AXB</i> or <i>AXO</i> in circle C_2 (see diagram) E.g. $\cos \beta = \frac{15 - 9.5}{\sqrt{40}} \Rightarrow \beta =$ (Note <i>AXB</i> =1.03 rads)	M1	3.1a
	Attempts $10 \times (2\pi - 0.635) + \sqrt{40} \times (2\pi - 2\beta)$	dM1	2.1
	= 89.7	A1	1.1b
		(4)	
			(8 marks)
Notes:			

(a)

M1: For the key step in an attempt to find either coordinate for where the two circles meet.

Look for an attempt to set up an equation in a single variable leading to a value for x or y.

A1:
$$x = 9.5$$
 (or $y = \frac{\sqrt{39}}{2} = awrt \pm 3.12$)

Question Number	Scheme	Marks
12. (a)	$15^{2} = 10^{2} + 10^{2} - 2 \times 10 \times 10 \cos \angle BOC$ $\cos \angle BOC = \frac{10^{2} + 10^{2} - 15^{2}}{2 \times 10 \times 10} \text{ or } \frac{-25}{200} \text{ or } -0.125$	M1 A1
	$\angle BOC = 1.696$ (N.B. 97.2 degrees is A0)	A1 [3]
(b)	Uses $s = 22\theta$ with their θ from part (a) not $-(2\pi - \theta)$ $r\theta = 22 \times 1.696 = 37.3(15)$	[3] M1 A1
	Perimeter = $r\theta$ + 15 + x + x ,= 39 + <i>their arc length</i> [76.3 (m)]	M1 A1ft [4]
(c)	area of sector = $\frac{1}{2}(22)^2\theta$ -not -($2\pi - \theta$)	B1
	area of triangle = $\frac{1}{2}(10)^2 \sin \theta$	B1
	Area of paved area = $\frac{1}{2}(22)^2 \theta - \frac{1}{2}(10)^2 \sin \theta = 410.432 - 49.6$ or $410.432 - \frac{75\sqrt{7}}{4} = 360.8$ or	M1 A1
	awrt 361 (m ²)	[4]
		(11 marks)
	Notes	(11 marks)
(a)	M1: Uses cosine rule – must be correct or other correct trigonometry e.g. $2 \times \theta$ where $\sin \theta = \frac{7.5}{10}$	
	A1: makes cos subject of formula correctly or uses $2 \times \sin^{-1}\left(\frac{7.5}{10}\right)$	
	A1: accept awrt 1.696 (answer in degrees is A0). If answer is given as 1.70 (3sf) then A0 but rem are available (special case below)	aining As
(b)	M1: Uses $s = 22\theta$ with their θ in radians, or correct formula for degrees if working in degrees	
	A1: Accept awrt 37.3 (may be implied by their perimeter)M1: Adds arc length to 15 to two further equal lengths for PerimeterA1ft: Accept awrt 76.3 do not need metres ft on their arc length—so 39 + arc length	
(c)	B1: This formula used with their θ in radians or correct formula for degrees - allow miscopy B1: Correct formula for area – may use half base times height M1: Subtracts correct triangle (two sides of length 10) from their sector A1: awrt 361 – do not need units	of angle
	Special case – uses 3 sf instead of 3 dp in part (a) Loses final A mark in part (a) but can have A marks in part (b) for 37.4 and 76.4 and can have A (c) for awrt 362	mark in part

Question Number	Scheme	Marks
11(a)(i)	$x^{2} + y^{2} - 6x + 2y + 5 = 0$ Obtains $(x \pm 3)^{2}$ and $(y \pm 1)^{2}$	M1
	$(x-3)^2 - 9 + (y+1)^2 - 1 + 5 = 0$ Obtains $(x-3)^2$ and $(y+1)^2$	A1
	Centre = (3, -1)	A1
(ii)	Radius ² = '3' ² +'-1' ² -5=5 \Rightarrow r = $\sqrt{5}$	M1A1
		(5)
(b)	Calculates $TQ = \sqrt{(8-3)^2 + (41)^2} = \sqrt{50}$	M1A1
	Uses $\cos \theta = \frac{\sqrt{5}}{\sqrt{50}} \Rightarrow \theta = 1.249$	M1A1
	angle MQN IS 2.498 radians to 3 decimal places	A1* (5)
(c)	Area of sector = $\left \frac{1}{2}r^2\theta\right = \frac{1}{2} \times \left(\sqrt{5}\right)^2 \times 2.498 (= awrt \ 6.24 \ / \ 6.25)$	M1A1
	Area of triangle = $\frac{1}{2}ab\sin C = \frac{1}{2} \times \sqrt{5} \times \sqrt{50} \times \sin 1.249 = (7.50)$	M1
	Shaded Area = $15.0 - 6.245 = 8.76$ or 8.75	dM1,A1 (5)
		(15 marks)

Mark (a)(i) and (a)(ii) together as one part.

(a)

M1 Obtains $(x \pm 3)^2$ and $(y \pm 1)^2$. This could be implied by the candidate writing down a centre of $(\pm 3, \pm 1)$

- A1 Obtains $(x-3)^2$ and $(y+1)^2$
- A1 Centre = (3, -1). Accept this without any working for M1A1A1
- M1 Uses $r^2 = '3'^2 + '-1'^2 5 = ... \Rightarrow r = ...$ The value of r^2 must be positive for this to be scored. Condone invisible bracketing. This may be implied by r = awrt 2.24
- A1 $r = \sqrt{5}$. Do not accept 2.24 on its own but remember to isw. Note that the M1 A1 can be scored for correct radius following a centre of (-3, +1)

Alternative to part (a) using $x^2 + y^2 + 2gx + 2fy + c = 0$, Centre = (-g, -f) Radius = $\sqrt{g^2 + f^2 - c}$

M1 States that $2g = \pm 6$ and $2f = \pm 2$. This could be implied by the candidate writing down a centre of $(\pm 3, \pm 1)$

- A1 States that 2g = -6 and 2f = 2
- A1 Centre = (3, -1) Accept this without any working for M1A1A1
- M1 Uses Radius = $\sqrt{g'^2 + f'^2 c}$

Question Number	Scheme	Mai	∵ks
9. (a)	$5^2 = 10^2 + 12^2 - 2 \times 10 \times 12 \cos \angle XAB$, or $\cos \angle XAB = \frac{10^2 + 12^2 - 5^2}{2 \times 10 \times 12}$ or $\frac{219}{240}$ or 0.9125 or $\frac{73}{80}$	M1	
	$\angle XAB = 0.421 \text{ or } 0.134\pi$	A1	[0]
(b)	Area of sector is $\frac{1}{2}r^2\theta = \frac{1}{2} \times 10^2 \times \theta$	M1	[2]
	Area of major sector is $\frac{1}{2} \times r^2 (2\pi - 2 \times "0.421")$ or $\pi \times r^2 - \frac{1}{2} \times r^2 \times 2 \times "0.421")$	M1	
	= 272	A1	
(c)	area of triangle $AXB = \frac{1}{2}10 \times 12 \times \sin XAB$ Way 2: Find angle XBA and hence area XBY	M1	[3]
	area of kite = $2 \times$ triangle <i>AXB</i> Area of kite = area of <i>XBY</i> + Area <i>XAY</i>	dM1	
	= awrt 49 = 37.298 + 11.76 = 49	A1	[2]
	Way 3: Finds length XY by cosine rule or elementary trigonometry (8.173) Uses area of kite = $\frac{1}{2}$ "8.173"×12 = awrt 49	M1 dM1 A1	[3]
		8 m	[3] arks
	Notes	0 11	
(a) M1: Use A1: acce	s cosine rule – must be a correct statement, allow statement $5^2 = 10^2 + 12^2 - 2 \times 10 \times 12 \cos \angle XAB$ ept awrt 0.421 (answers in degrees gain M1 A0). Also 0.42 is A0		
	s area formula with $r = 10$ and any angle in radians. If they use degrees they must use the formula $\frac{\theta}{360} \times \pi 10^2$		
	ds angle in major sector ft their angle from (a) and uses sector formula or subtracts minor area from circle (all set use $(2\pi - 2 \times "0.421")$ but <i>r</i> may be 5 instead of 10 for this mark	low wor	k in
0 /	ept awrt 272 (may reach this using degrees)		
(c) Way 1: N	M1 : Finds area of triangle <i>AXB</i> , using 10, 12 and their angle <i>XAB</i>		
	M1 : Doubles area of triangle <i>AXB</i> 11 : Finds angle <i>XBA</i> (0.958) by valid method (cosine rule) (NOT 90 – <i>XAB</i>) and hence area <i>XBY</i> = $\frac{1}{2}5 \times 5$	×sin1.9	163
dM Way 3:	M1 : Adds areas of triangles <i>XBY</i> and <i>XAY</i> (37.298 and 11.76) M1 : Finds length <i>XY</i> by cosine rule or elementary trigonometry (8.173) dM1 : Uses area of kite = $\frac{1}{2}$ "8.173"×12		
For each m	ethod A1: awrt 49- do not need units		

	www.yesterdaysmathsexam.com	
Question Number	Ncheme	Marks
11 (a)	States $r^2 = 1.2^2 + (r - 0.4)^2$	M1
	$0.8r = 1.60 \Longrightarrow r = 2.$	A1*
(b)	Attempt to find the angle or 1/2 angle	(2)
(0)	$\frac{1}{2}\theta' = \arcsin\left(\frac{1.2}{2}\right) \Rightarrow \frac{1}{2}\theta' = awrt 37^{\circ} awrt \ 0.64 \text{ rads}$	N (1
		M1
	$\cos AOB = 1.2870$	A1* (2)
(c)	Attempts to find area of sector using degree or radian formula	(2)
	Area sector $=\frac{'73.74'}{360} \times \pi \times 2^2$ or $\frac{1}{2} \times 2^2 \times '1.2870'$	M1
	Attempts area of triangle using the correct formula	
	$Area = \frac{1}{2} \times 2 \times 2 \times \sin' 73.74^{\circ}$ or $Area = \frac{1}{2} \times 2 \times 2 \times \sin' 1.2870^{\circ}$	M1
	2 Area of sail = Sector - Triangle using the correct combination	
	$= \frac{1}{2} \times 2^2 \times 1.29' - \frac{1}{2} \times 2^2 \times \sin^2 1.29' = 0.654 (m^2)$	dM1, A1
	$\frac{1}{2}$ $\frac{1}$	
		(4) (8 marks)
Fo Fo A1* cs	tempts to find either the angle or half angle in the sector in either degrees or or the half angle accept $\arctan\left(\frac{1.2}{1.6}\right)$, $\arcsin\left(\frac{1.2}{2}\right)$, $\arccos\left(\frac{1.6}{2}\right)$ or the whole angle accept $2.4^2 = 2^2 + 2^2 - 2 \times 2 \times 2 \times \cos\theta \Rightarrow \theta = \text{ or similar}$ o. This is a given answer $AOB = 1.2870$ low from a value where $\frac{1}{2}$ the angle lacks 4 dp of accuracy	
(c)		
	rrect method to find the area of the sector with radius 2 and angle 1.2870 rad angle was found in degrees use $=\frac{'73.74'}{360} \times \pi \times 2^2 = (2.574)$	lians
Ifa	angle was found in radians use $=\frac{1}{2} \times 2^2 \times 1.2870'$	
	rrect method to find the area of the isosceles triangle with lengths 2 and angle	le 1.2870
Fo	r the triangle AOB accept $\frac{1}{2} \times 2 \times 2 \times \sin' 73.74'$ or $\frac{1}{2} \times 2 \times 2 \times \sin' 1.2870' = (1)$.92)
Als	so for triangle AOB accept use of $\frac{1}{2}bh = \frac{1}{2} \times 2.4 \times 1.6$. Note $\frac{1}{2}bh = \frac{1}{2} \times 2.4 \times 1.6$	2 is M0
dM1 Att It i	tempts the area of the sail using the correct combinations of sector - triangle. s dependent upon both previous M's	
Ift	he candidate uses the segment formula $\frac{1}{2} \times 2^2 \times 1.29' - \frac{1}{2} \times 2^2 \times \sin 1.29'$ all t	hree M's can be
aw	arded	
A 1	$rt 0.654(m^2)$	

A1 awrt
$$0.654(m^2)$$

Question	Scheme	Marks
8. (a)	$\frac{\sin D}{5} = \frac{\sin 1.1}{6}$	M1
	$5 6 \\ \sin D = 0.74267 \text{ so } D = 0.84$	M1, A1
	$B = \pi - (1.1 + 0.84) = 1.20 *$	Al*
		[4]
(b)	Uses angle $DBC = \pi - 1.2 = \text{awrt } 1.94$	B1
	Area of sector is $\frac{1}{2}r^2\theta = \frac{1}{2} \times 6^2 \times 1.94$ or Area of triangle ABD $= \frac{1}{2} \times 5 \times 6 \times \sin 1.2$	M1
	(=34.9) $(=14.0)$	
	Total area is $\frac{1}{2} \times 6^2 \times 1.94' + \frac{1}{2} \times 5 \times 6 \times \sin 1.2$	dM1
	$=48.9 \text{cm}^2$	A1
		[4]
		8 marks
(a)	Notes	
There are M1: Use information	the final A1 mark. So 1.1 rads = awrt 63.0° and $(180 - awrt 63.0 - awrt 48.0) = awrt 69.0 \times \frac{7}{18}$ e many ways to attempt this question: For example is cosine rule $6^2 = 5^2 + x^2 - 2 \times 5 \times x \cos 1.1$ (where $x = AD$) and attempts to solve to find x. For on $x \approx 6.29$ es cosine rule $\cos B = \frac{6^2 + 5^2 - \text{their}' 6.29'^2}{2 \times 6 \times 5}$	30
A1: Acl	nieves $\cos B = \frac{6^2 + 5^2 - (\operatorname{awrt} 6.29)^2}{2}$	
	2×6×5	
A1: 1.2	J*	
	s angles on a straight line formula. Score for $\pi - 1.2$ or allow awrt 1.94 as evidence. Inverted to degrees accept awrt 111.2° as evidence	
M1: Use You For If tl For	is a correct area formula for the sector or a correct area formula for the triangle. may follow through on an incorrectly found angle <i>DBC</i> example $2\pi - 1.2$ is acceptable but $180^\circ - 1.2$ is not as it is using mixed units. The angle was found in degrees, the correct formula must be used. the triangle the correct combinations of sides and angle should be attempted. You may see the area of triangle $ABD = \frac{1}{2}5 \times (\text{their } 6.29) \times \sin(1.1)$ or $\frac{1}{2}6 \times (\text{their } 6.29) \times \sin(1.6)$	ir ADB)
dM1: Ad Yo	ds together a correct area formula for the sector and a correct area formula for the triangle. u may follow through on an incorrectly found angle <i>DBC</i> or <i>ADB</i> cept awrt 48.9 (do not need units)	,

Question Number	Scheme	Marks
15	Area of triangle = $\frac{1}{2} \times (2r)^2 \sin\left(\frac{\pi}{3} \text{ or } 60\right)$ or $\frac{1}{2} \times (r)^2 \sin\left(\frac{\pi}{3} \text{ or } 60\right)$ Correct method for the area of either triangle. Ignore any reference to which triangle they are finding the area of.	M1
	Area of sector = $\frac{1}{2} \times r^2 \times \frac{\pi}{3}$ Use of the sector formula $\frac{1}{2}r^2\theta$ with $\theta = \frac{\pi}{3}$ which may be embedded within a segment	M1
	Area R = Sector + 2 Segments = $\frac{1}{2}r^2 \times \frac{\pi}{3} + 2 \times \left(\frac{1}{2}r^2 \times \frac{\pi}{3} - \frac{1}{2}r^2 \times \frac{\sqrt{3}}{2}\right)$	
	Area R = Triangle + 3 Segments = $\frac{1}{2}r^2 \times \frac{\sqrt{3}}{2} + 3 \times \left(\frac{1}{2}r^2 \times \frac{\pi}{3} - \frac{1}{2}r^2 \times \frac{\sqrt{3}}{2}\right)$	
	Area $R = 3$ Sectors -2 Triangles $= 3 \times \frac{1}{2}r^2 \times \frac{\pi}{3} - 2 \times \left(\frac{1}{2}r^2 \times \frac{\sqrt{3}}{2}\right)$	M1A1
	Area R = Big triangle – 3 White bits = $\frac{1}{2} \times (2r)^2 \frac{\sqrt{3}}{2} - 3 \times \left(\frac{1}{2}r^2 \times \frac{\sqrt{3}}{2} - \left(\frac{1}{2}r^2 \times \frac{\pi}{3} - \frac{1}{2}r^2 \times \frac{\sqrt{3}}{2}\right)\right)$	
	M1: A fully correct method (may be implied by a final answer of awrt $0.705r^2$)	
	A1: Correct exact expression - for this to be scored $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ must be seen	
	$=\frac{1}{2}\pi r^{2} - \frac{\sqrt{3}}{2}r^{2} = r^{2}\left(\frac{1}{2}\pi - \frac{\sqrt{3}}{2}\right)$ Cso (Allow $\frac{r^{2}}{2}(\pi - \sqrt{3})$ or any exact equivalent with r^{2} taken out as a common factor)	A1
		(5 marks)

Question Number	Scheme	Marks
6(a)	$\cos \angle BAC = \frac{12^2 + 10^2 - 6^2}{2 \times 12 \times 10} \Longrightarrow \angle BAC = 0.5223$	M1A1
(b)	Arc $BD = r\theta = 10 \times 0.5223$ Perimeter = 6+2+ 10×0.5223=13.22 (m)	(2) M1 dM1,A1 (3)
(c)	Area of sector $BAD = \frac{1}{2}r^2\theta = \frac{1}{2} \times 10^2 \times 0.5223$ (= 26.116)	M1
	Area of triangle $ABC \frac{1}{2} ab \sin C = \frac{1}{2} \times 12 \times 10 \times \sin 0.5223 (= 29.932)$	M1
	Area of flowerbed $BCD = \frac{1}{2} \times 12 \times 10 \times \sin 0.5223 - \frac{1}{2} \times 10^2 \times 0.5223$	dM1
	$= 3.81 / 3.82 (m^2)$	Al
		(4) (9 marks)

(a)

M1 Attempts use of the formula $6^2 = 10^2 + 12^2 - 2 \times 10 \times 12 \cos A$ or $\cos \angle BAC = \frac{12^2 + 10^2 - 6^2}{2 \times 12 \times 10}$ The sides must be in the correct "position" within the formula. Condone different notation Eg. θ

A1 $\angle BAC = awrt \ 0.5223$ The angle in degrees (awrt 29.9°) is A0

(b)

- M1 Attempts arc formula: In radians uses Arc $BD = r\theta = 10 \times "0.5223"$ In degrees uses Arc $BD = \frac{\theta}{360} \times 2\pi r = \frac{"29.9"}{360} \times 2\pi \times 10$
- dM1 Dependent upon the arc formula having been used. It is for calculating the perimeter as 8 + arc length.
 A1 Dependent = aust 12.22 (m)
- A1 Perimeter = awrt 13.22(m)
- (c)

M1 Attempts area of sector formula: Area of sector $BAD = \frac{1}{2}r^2\theta = \frac{1}{2} \times 10^2 \times "0.5223"$ In degrees uses Area of sector $BAD = \frac{\theta}{360} \times \pi r^2 = \frac{"29.9"}{360} \times \pi \times 10^2$

M1 Attempts area of triangle formula: Area of triangle $ABC = \frac{1}{2}ab\sin C = \frac{1}{2}\times12\times10\times\sin^{\circ}0.5223^{\circ}$ You may see Herons formula used with $S = \frac{10+6+12}{2} = (14)$ and $A = \sqrt{S(S-10)(S-6)(S-12)}$ Watch for other methods including the calculation of a perpendicular.

dM1 Dependent upon both correct formulae. It is scored for finding area of triangle - area of sector A1 Allow awrt 3.81 or 3.82 (m²)

Question Number	Scheme	Marks	
4.(a)	Attempts Area = $\frac{1}{2}ab\sin C \Rightarrow 24\sqrt{3} = \frac{1}{2}3x \times x\sin 60^{\circ}$	M1	
	Uses $\sin 60^\circ = \frac{\sqrt{3}}{2}$ or $\Rightarrow x^2 = 32 \Rightarrow x = 4\sqrt{2}$	dM1A1*	
(b)	Uses $BC^2 = (12\sqrt{2})^2 + (4\sqrt{2})^2 - 2(12\sqrt{2})(4\sqrt{2})\cos 60^\circ$	[3] M1	
	$\Rightarrow BC^2 = 224 \Rightarrow BC = 4\sqrt{14}$	A1,A1 [3]	
(a)		(6 marks)	
(a) M1 At	tempts to use Area = $\frac{1}{2}ab\sin C$ Score for sight of $24\sqrt{3} = \frac{1}{2}3x \times x\sin 60^{\circ}$		
	her using $24\sqrt{3} = \frac{1}{2}3x \times x \sin 60^\circ$ with $\sin 60^\circ = \frac{\sqrt{3}}{2}$ (which may be implied) to reach a	form $x^2 = k$	
So	is sight of $x^2 = \frac{16\sqrt{3}}{\sin 60^\circ}$ or $x = 4\sqrt{2}$ would imply $\sin 60^\circ = \frac{\sqrt{3}}{2}$ and $x^2 = k$		
	$\sin 60^{\circ}$ 2 sight of a correct simplified intermediate line followed by the correct answer.		
	$24\sqrt{3} = \frac{1}{2}3x \times x \sin 60^\circ \Longrightarrow 3x^2 = 96 \Longrightarrow x = 4\sqrt{2}$		
	cannot be awarded for $24\sqrt{3} = \frac{1}{2}3x \times x \times \frac{\sqrt{3}}{2} \Longrightarrow x = 4\sqrt{2}$		
	is is a show that and you must see $x = 4\sqrt{2}$ following $x^2 = 32$ OR $x^2 = 16 \times 2$ or $x = \sqrt{2}$ * to be scored	$\overline{32}$ for the	
If	you see a candidate start $41.57 = \frac{1}{2}3x \times x \times 0.866 \Rightarrow x^2 = 32 \Rightarrow x = 4\sqrt{2}$ award M1, dN	11, A0	
	ternatively candidate can assume that $x = 4\sqrt{2}$ and attempt		
$\frac{1}{2}$	$4\sqrt{2} \times 12\sqrt{2} \sin 60^\circ$ for M1, $\frac{1}{2} 4\sqrt{2} \times 12\sqrt{2} \times \frac{\sqrt{3}}{2} = 24\sqrt{2}$ for dM1 and make a statement	for A1*	
(b)			
M1 Us	Uses the cosine rule $BC^2 = (4\sqrt{2})^2 + (12\sqrt{2})^2 - 2(4\sqrt{2})(12\sqrt{2})\cos 60^\circ$ Condone missing brackets		
Ca	Can be scored for $BC^2 = (3x)^2 + (x)^2 - 2(3x)(x)\cos 60^\circ$ It can be awarded for an attempt with their x		
Al	Also accept the form $\cos 60^\circ = \frac{(12\sqrt{2})^2 + (4\sqrt{2})^2 - BC^2}{2(12\sqrt{2})(4\sqrt{2})}$		
	$C^2 = 224$ May be implied by $BC = \sqrt{224}$ or $4\sqrt{14}$		

If you see a candidate start $BC^2 = (5.66)^2 + (16.97)^2 - 2(5.66)(16.97)\cos 60^\circ \implies BC = 4\sqrt{14}$ award M1, A1, A0

Question Number	Scheme	Marks	
4. (a)	Usually answered in radians: Uses $BCD = 3.5 \times (angle)$, $= 3.5 \times 1.77 = 6.195$ (m) (accept awrt 6.20)	M1 A1 (2)	
(b)	Area = $\frac{1}{2}(3.5)^2 \times 1.77 = 10.84$ (m ²)	M1 A1	
(c)	Area of triangle = $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\text{angle})$, = $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\frac{\pi}{2} - \frac{1.77}{2})$ (=awrt 4.1) Total area = "10.84"+2×"4.101" = 19.04	(2) M1, A1 M1 A1cao	
		(4) [8]	
	Notes		
(a)	M1: uses $s = 3.5 \times \theta$ with θ in radians or completely correct work in degrees		
(b)	A1: awrt 6.20 or just 6.2 (do not need to see units) Correct answer can imply the method. M1 for attempt to use $A = \frac{1}{2} \times 3.5^2 \times \theta$ (Accept θ in degrees.)		
	A1 for awrt 10.84 (do not need to see units) isw if correct answer is followed by 10.8. Correct answer can imply the method.		
(c)	M1: Uses area of triangle $\frac{1}{2} \times 3.7 \times 3.5 \times \sin(\text{angle})$ Must be correct method for area of triangle	le but may	
	be less direct.		
	A1: Correct expression using correct angle i.e. $\frac{\pi}{2} - \frac{1.77}{2}$ or awrt 0.69 or awrt 39 degrees (need at least 2		
	sf if no other work seen, but may be implied by correct final answer) If correct expression is given then isw (so e.g. isw an answer of 0.0775 implying angle set to degrees on calculator) M1: Adds twice their second calculated area (even if rectangle or segment) to their sector area (may have been slips or errors in one or both formulae – such as missing $\frac{1}{2}$ or mixture of degrees and radians or weak attempt at triangle area) so M0A0M1A0 is a possible mark distribution A1: 19.04 cao (common answer through insufficient accuracy is 19.08 which loses final mark) Special Case . The mark profile M1A0M1A0M1A0M1A0 can be given if the angle is misunderstood as 1.77π or as <i>AFB</i> for example		
	If "10.84"+3.5×3.7 sin(angle) is used then this can gain both M marks and the A marks if correct.		
	But use of $3.5 \times 3.7 \sin(\text{angle})$ and later doubled and added to "10.84" is 1 st M0, 2 nd M1.		

Question number	Scheme	Marks
5	$x^2 + y^2 - 10x + 6y + 30 = 0$	
(a)	Uses any appropriate method to find the coordinates of the centre, e.g achieves $(x \pm 5)^2 + (y \pm 3)^2 = \dots$ Accept ($\pm 5, \pm 3$) as indication of this.	M1