Question	Scheme	Marks	AOs
6(a)	Angle $A O B=\frac{\pi-\theta}{2}$	B1	2.2a
		(1)	
(b)	Area $=2 \times \frac{1}{2} r^{2}\left(\frac{\pi-\theta}{2}\right)+\frac{1}{2}(2 r)^{2} \theta$	M1	2.1
	$=\frac{1}{2} r^{2} \pi-\frac{1}{2} r^{2} \theta+2 r^{2} \theta=\frac{3}{2} r^{2} \theta+\frac{1}{2} r^{2} \pi=\frac{1}{2} r^{2}(3 \theta+\pi)^{*}$	A1*	1.1b
		(2)	
(c)	Perimeter $=4 r+2 r\left(\frac{\pi-\theta}{2}\right)+2 r \theta$	M1	3.1a
	$=4 r+r \pi+r \theta$ or e.g. $r(4+\pi+\theta)$	A1	1.1b
		(2)	

Notes

(a)

B1: Deduces the correct expression for angle $A O B$
Note that $\frac{180-\theta}{2}$ scores B0
(b)

M1: Fully correct strategy for the area using their angle from (a) appropriately.
Need to see $2 \times \frac{1}{2} r^{2} \alpha$ or just $r^{2} \alpha$ where α is their angle in terms of θ from part (a) $+\frac{1}{2}(2 r)^{2} \theta$ with or without the brackets.
A1*: Correct proof. For this mark you can condone the omission of the brackets in $\frac{1}{2}(2 r)^{2} \theta$ as long as they are recovered in subsequent work e.g. when this term becomes $2 r^{2} \theta$
The first term must be seen expanded as e.g. $\frac{1}{2} r^{2} \pi-\frac{1}{2} r^{2} \theta$ or equivalent
(c)

M1: Fully correct strategy for the perimeter using their angle from (a) appropriately
Need to see $4 r+2 r \alpha+2 r \theta$ where α is their angle from part (a) in terms of θ
A1: Correct simplified expression
Note that some candidates may change the angle to degrees at the start and all marks are available e.g.
(a) $\frac{180-\frac{180 \theta}{\pi}}{2}$
(b) $2\left(\frac{180-\frac{180 \theta}{\pi}}{2}\right) \times \frac{1}{360} \times \pi r^{2}+\frac{\theta}{360} \times \frac{180}{\pi} \times \pi(2 r)^{2}=\frac{1}{2} \pi r^{2}-\frac{1}{2} r^{2} \theta+2 r^{2} \theta=\frac{1}{2} r^{2}(3 \theta+\pi)$
(c) $4 r+2\left(\frac{180-\frac{180 \theta}{\pi}}{2}\right) \times \frac{1}{360} \times 2 \pi r+\frac{180 \theta}{\pi} \times \frac{1}{360} \times 2 \pi(2 r)=4 r+\pi r+r \theta$

Question	Scheme	Marks	AOs
3	States or uses $\quad \frac{1}{2} r^{2} \theta=11$	B1	1.1b
	States or uses $2 r+r \theta=4 r \theta$	B1	1.1b
	Attempts to solve, full method $r=\ldots$	M1	3.1a
	$r=\sqrt{33}$	A1	1.1b
			[4]
(4 marks)			
Notes: B1: States or uses $\frac{1}{2} r^{2} \theta=11$ This may be implied with an embedded found value for θ B1: States or uses $2 r+r \theta=4 r \theta$ or equivalent M1: Full method to find $r=\ldots$ This involves combining the equations to eliminate θ or find θ The initial equations must be of the same "form" (see ${ }^{* *}$) but condone slips when attempting to solve. It cannot be scored from impossible values for θ Hence only score if $0<\theta<2 \pi$ FYI $\theta=\frac{2}{3}$ radians Allow this to be scored from equations such as $\ldots r^{2} \theta=11$ and ones that simplify to $\ldots r=\ldots r \theta^{* *}$ Allow their $2 r+r \theta=4 r \theta \Rightarrow \theta=.$. then substitute this into their $\frac{1}{2} r^{2} \theta=11$ Allow their $2 r+r \theta=4 r \theta \Rightarrow r \theta=.$. then substitute this into their $\frac{1}{2} r^{2} \theta=11$ Allow their $\frac{1}{2} r^{2} \theta=11 \Rightarrow \theta=\frac{. .}{r^{2}}$ then substitute into their $2 r+r \theta=4 r \theta \Rightarrow r=.$. A1: $r=\sqrt{33}$ only but isw after a correct answer.			
The whole question can be attempted using θ in degrees. B1: States or uses $\frac{\theta}{360} \times \pi r^{2}=11$ B1: States or uses $2 r+\frac{\theta}{360} \times 2 \pi r=4 \times \frac{\theta}{360} \times 2 \pi r$			

Question	Scheme	Marks	AOs
3 (a)	Allow explanations such as - student should have worked in radians - they did not convert degrees to radians - 40 should be in radians - θ should be in radians - angle (or θ) should be $\frac{40 \pi}{180}$ or $\frac{2 \pi}{9}$ - correct formula is $\pi r^{2}\left(\frac{\theta}{360}\right)$ \{where θ is in degrees \} - correct formula is $\pi r^{2}\left(\frac{40}{360}\right)$	B1	2.3
		(1)	
(b) Way 1	\{Area of sector $=$ \} $\frac{1}{2}\left(5^{2}\right)\left(\frac{2 \pi}{9}\right)$	M1	1.1b
	$=\frac{25}{9} \pi\left\{\mathrm{~cm}^{2}\right\} \quad$ or awrt $8.73\left\{\mathrm{~cm}^{2}\right\}$	A1	1.1b
		(2)	
(b) Way 2	\{Area of sector $=$ \} $\pi\left(5^{2}\right)\left(\frac{40}{360}\right)$	M1	1.1b
	$=\frac{25}{9} \pi\left\{\mathrm{~cm}^{2}\right\}$ or awrt $8.73\left\{\mathrm{~cm}^{2}\right\}$	A1	1.1b
		(2)	
(3 marks)			
Notes for Question 3			
(a)			
B1: \quadE S	Explains that the formula use is only valid when angle $A O B$ is applied in radians. See scheme for examples of suitable explanations.		
(b) W	Way 1		
M1: C	Correct application of the sector formula using a correct value for θ in radians		
Note: A	Allow exact equivalents for θ e.g. $\theta=\frac{40 \pi}{180}$ or θ in the range $[0.68,0.71]$		
A1*: A	Accept $\frac{25}{9} \pi$ or awrt 8.73 Note: Ignore the units		
(b) W	Way 2		
M1: C	Correct application of the sector formula in degrees		
A1: A	Accept $\frac{25}{9} \pi$ or awrt 8.73 Note: Ignore the units.		
Note: ${ }^{\text {A }}$	Allow exact equivalents such as $\frac{50}{18} \pi$		
Note: ${ }^{\text {a }}$	Allow M1 A1 for $500\left(\frac{\pi}{180}\right)=\frac{25}{9} \pi\left\{\mathrm{~cm}^{2}\right\} \quad$ or awrt $8.73\left\{\mathrm{~cm}^{2}\right\}$		

Question	Scheme	Marks	AOs
11 (a)	Solves $x^{2}+y^{2}=100$ and $(x-15)^{2}+y^{2}=40$ simultaneously to find x or y E.g. $(x-15)^{2}+100-x^{2}=40 \Rightarrow x=\ldots$	M1	3.1a
	$\begin{array}{lr} \text { Either } & \Rightarrow-30 x+325=40 \Rightarrow x=9.5 \\ \text { Or } & y=\frac{\sqrt{39}}{2}=\mathrm{awrt} \pm 3.12 \end{array}$	A1	1.1b
	Attempts to find the angle $A O B$ in circle C_{1} Eg Attempts $\cos \alpha=\frac{" 9.5 "}{10}$ to find α then $\times 2$	M1	3.1a
	Angle $A O B=2 \times \operatorname{arcos}\left(\frac{9.5}{10}\right)=0.635 \mathrm{rads}(3 \mathrm{sf}) *$	A1*	2.1
		(4)	
(b)	Attempts $10 \times(2 \pi-0.635)=56.48$	M1	1.1b
	Attempts to find angle $A X B$ or $A X O$ in circle C_{2} (see diagram) $\text { E.g. } \left.\quad \cos \beta=\frac{15-" 9.5^{\prime \prime}}{\sqrt{40}} \Rightarrow \beta=\ldots \quad \text { (Note } A X B=1.03 \mathrm{rads}\right)$	M1	3.1a
	Attempts $10 \times(2 \pi-0.635)+\sqrt{40} \times(2 \pi-2 \beta)$	dM1	2.1
	$=89.7$	A1	1.1b
		(4)	
(8 marks)			
Notes:			

(a)

M1: For the key step in an attempt to find either coordinate for where the two circles meet.
Look for an attempt to set up an equation in a single variable leading to a value for x or y.
A1: $x=9.5$ (or $y=\frac{\sqrt{39}}{2}=\operatorname{awrt} \pm 3.12$)

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme ${ }^{\text {a }}$ Marks

\hline 12. (a) \&

\hline \& Notes

\hline (a)
(b)

(c) \& | M1: Uses cosine rule - must be correct or other correct trigonometry e.g. $2 \times \theta$ where $\sin \theta=\frac{7.5}{10}$ |
| :--- |
| A1: makes cos subject of formula correctly or uses $2 \times \sin ^{-1}\left(\frac{7.5}{10}\right)$ |
| A1: accept awrt 1.696 (answer in degrees is A0). If answer is given as 1.70 (3sf) then A0 but remaining As are available (special case below) |
| M1: Uses $s=22 \theta$ with their θ in radians, or correct formula for degrees if working in degrees |
| A1: Accept awrt 37.3 (may be implied by their perimeter) |
| M1: Adds arc length to 15 to two further equal lengths for Perimeter |
| A1ft: Accept awrt 76.3 do not need metres ft on their arc length - so $39+$ arc length |
| B1: This formula used with their θ in radians or correct formula for degrees - allow miscopy of angle |
| B1: Correct formula for area - may use half base times height |
| M1: Subtracts correct triangle (two sides of length 10) from their sector |
| A1: awrt 361 - do not need units |
| Special case - uses 3 sf instead of 3 dp in part (a) |
| Loses final A mark in part (a) but can have A marks in part (b) for 37.4 and 76.4 and can have A mark in part |
| (c) for awrt 362 |

\hline
\end{tabular}

Mark (a)(i) and (a)(ii) together as one part.
(a)

M1 Obtains $(x \pm 3)^{2}$ and $(y \pm 1)^{2}$. This could be implied by the candidate writing down a centre of $(\pm 3, \pm 1)$
A1 Obtains $(x-3)^{2}$ and $(y+1)^{2}$
A1 Centre $=(3,-1)$. Accept this without any working for M1A1A1
M1 Uses $r^{2}=3^{\prime 2}++^{\prime}-1^{\prime 2}-5=\ldots \Rightarrow r=\ldots$ The value of r^{2} must be positive for this to be scored.
Condone invisible bracketing. This may be implied by $r=$ awrt 2.24
A1 $r=\sqrt{5}$. Do not accept 2.24 on its own but remember to isw.
Note that the M1 A1 can be scored for correct radius following a centre of $(-3,+1)$
Alternative to part (a) using $x^{2}+y^{2}+2 g x+2 f y+c=0, \quad$ Centre $=(-g,-f) \quad$ Radius $=\sqrt{g^{2}+f^{2}-c}$
M1 States that $2 g= \pm 6$ and $2 f= \pm 2$. This could be implied by the candidate writing down a centre of $(\pm 3, \pm 1)$
A1 States that $2 g=-6$ and $2 f=2$
A1 Centre $=(3,-1)$ Accept this without any working for M1A1A1
M1 Uses Radius $=\sqrt{g^{\prime 2}+f^{\prime 2}-c}$

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 9. (a)
(b)

(c) \& \begin{tabular}{l}
$$
\begin{aligned}
& 5^{2}=10^{2}+12^{2}-2 \times 10 \times 12 \cos \angle X A B, \text { or } \cos \angle X A B=\frac{10^{2}+12^{2}-5^{2}}{2 \times 10 \times 12} \text { or } \frac{219}{240} \text { or } 0.9125 \text { or } \frac{73}{80} \\
& \angle X A B=0.421 \text { or } 0.134 \pi
\end{aligned}
$$

Area of sector is $\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 10^{2} \times \theta$

Area of major sector is $\frac{1}{2} \times r^{2}\left(2 \pi-2 \times " 0.421\right.$ ") or $\pi \times r^{2}-\frac{1}{2} \times r^{2} \times 2 \times " 0.421$ " $)$
$$
=272
$$

area of triangle $A X B=\frac{1}{2} 10 \times 12 \times \sin X A B$

Way 2: Find angle $X B A$ and hence area

area of kite $=2 \times$ triangle $A X B$
$$
=\text { awrt } 49
$$
$$
\begin{array}{r}
\text { Area of kite }=\text { area of } X B Y+\text { Area } X A Y \\
=37.298+11.76=49
\end{array}
$$

Way 3: Finds length $X Y$ by cosine rule or elementary trigonometry (8.173)

Uses area of kite $=\frac{1}{2}$ " $8.173 " \times 12$
$$
=\operatorname{awrt} 49
$$

 \&

M1

A1

[2]

M1

M1

A1

[3]

M1

dM1

A1

[3]

M1

dM1

A1

[3]

8 marks
\end{tabular}

\hline \& Notes \&

\hline \multicolumn{3}{|l|}{| (a) M1: Uses cosine rule - must be a correct statement, allow statement $5^{2}=10^{2}+12^{2}-2 \times 10 \times 12 \cos \angle X A B$ |
| :--- |
| A1: accept awrt 0.421 (answers in degrees gain M1 A0). Also 0.42 is A0 |
| (b) M1: Uses area formula with $r=10$ and any angle in radians. If they use degrees they must use the formula $\frac{\theta}{360} \times \pi 10^{2}$ |
| M1: Finds angle in major sector ft their angle from (a) and uses sector formula or subtracts minor area from circle (allow work in degrees) Must use $(2 \pi-2 \times " 0.421 ")$ but r may be 5 instead of 10 for this mark |
| A1: Accept awrt 272 (may reach this using degrees) |
| (c) Way 1: M1: Finds area of triangle $A X B$, using 10,12 and their angle $X A B$ |
| dM1: Doubles area of triangle $A X B$ |
| Way 2: M1: Finds angle $X B A$ (0.958 ..) by valid method (cosine rule) (NOT $\mathbf{9 0}-\boldsymbol{X A B}$) and hence area $X B Y=\frac{1}{2} 5 \times 5 \times \sin 1.9163$ |
| dM1: Adds areas of triangles $X B Y$ and $X A Y$ (37.298 and 11.76) |
| Way 3: M1: Finds length $X Y$ by cosine rule or elementary trigonometry (8.173) dM1: Uses area of kite $=\frac{1}{2} " 8.173 " \times 12$ |
| For each method A1: awrt 49- do not need units |}

\hline
\end{tabular}

(a)

M1 Attempts Pythagoras with lengths $r,(r-0.4)$ and 1.2 in the correct positions within the formula Alternatively uses the given answer and attempts Pythagoras' theorem with $1.6,1.2$ and 2
A1* Proceeds to $r=2$ with no errors
If the alternative method is used, then there must be a statement such as hence true, $r=2$
(b)

M1 Attempts to find either the angle or half angle in the sector in either degrees or radians
For the half angle accept $\arctan \left(\frac{1.2}{1.6}\right), \arcsin \left(\frac{1.2}{2}\right), \arccos \left(\frac{1.6}{2}\right)$
For the whole angle accept $2.4^{2}=2^{2}+2^{2}-2 \times 2 \times 2 \times \cos \theta \Rightarrow \theta=$.. or similar.
A1* cso. This is a given answer $A O B=1.2870$
Allow from a value where $1 / 2$ the angle lacks 4 dp of accuracy
(c)

M1 Correct method to find the area of the sector with radius 2 and angle 1.2870 radians
If angle was found in degrees use $=\frac{{ }^{\prime} 73.74^{\prime}}{360} \times \pi \times 2^{2}=(2.574)$
If angle was found in radians use $=\frac{1}{2} \times 2^{2} \times 1.2870^{\prime}$
M1 Correct method to find the area of the isosceles triangle with lengths 2 and angle 1.2870
For the triangle $A O B$ accept $\frac{1}{2} \times 2 \times 2 \times \sin ' 73.74^{\prime}$ or $\frac{1}{2} \times 2 \times 2 \times \sin ^{\prime} 1.2870^{\prime}=(1.92)$
Also for triangle $A O B$ accept use of $\frac{1}{2} b h=\frac{1}{2} \times 2.4 \times 1.6$. Note $\frac{1}{2} b h=\frac{1}{2} \times 2.4 \times 2$ is M0
dM1 Attempts the area of the sail using the correct combinations of sector - triangle.
It is dependent upon both previous M's
If the candidate uses the segment formula $\frac{1}{2} \times 2^{2} \times{ }^{\prime} 1.29^{\prime}-\frac{1}{2} \times 2^{2} \times \sin ^{\prime} 1.29^{\prime}$ all three M's can be awarded
A1 awrt $0.654\left(m^{2}\right)$

Question	Scheme	Marks
8. (a)	$\frac{\sin D}{5}=\frac{\sin 1.1}{6}$	M1
	$\begin{aligned} \sin D & =0.74267 \text { so } \quad D=0.84 \\ B & =\pi-(1.1+0.84)=1.20 * \end{aligned}$	M1, A1
(b)	Uses angle $D B C=\pi-1.2=$ awrt 1.94	$\text { B1 } \quad[4]$
	Area of sector is $\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 6^{2} \times 1.94^{\prime} \quad$ or Area of triangle $\mathrm{ABD}=\frac{1}{2} \times 5 \times 6 \times \sin 1.2$ $(=34.9)$ ($=14.0$)	M1
	Total area is $\frac{1}{2} \times 6^{2} \times 1.9^{\prime}+\frac{1}{2} \times 5 \times 6 \times \sin 1.2$	dM1
	$=48.9 \mathrm{~cm}^{2}$	A1
		8 marks
	Notes	

M1: Uses sine rule - the sides and angles must be in the correct positions
M1: Makes $\sin D$ the subject and uses inverse sine (in degrees or radians)
A1: Accept awrt 0.84 or in degrees accept answers truncating $47.9 . .^{\circ}$ or rounding to 48.0°
A1*: Answer is printed so should see either $\pi-(1.1+$ awrt 0.84$)$ or $\pi-1.1-$ awrt 0.84 before you see 1.20
If the question was changed to degrees look for accuracy to one decimal places throughout the question for the final A1 mark. So 1.1 rads $=\operatorname{awrt} 63.0^{\circ}$ and $(180-\operatorname{awrt} 63.0-\operatorname{awrt} 48.0)=\operatorname{awrt} 69.0 . . \times \frac{\pi}{180}=1.20$

There are many ways to attempt this question: For example

M1: Uses cosine rule $6^{2}=5^{2}+x^{2}-2 \times 5 \times x \cos 1.1$ (where $x=A D$) and attempts to solve to find x. For information $x \approx 6.29$
M1: Uses cosine rule $\cos B=\frac{6^{2}+5^{2}-\text { their }^{\prime} 6.29^{\prime 2}}{2 \times 6 \times 5}$
A1: Achieves $\cos B=\frac{6^{2}+5^{2}-(\text { awrt } 6.29)^{2}}{2 \times 6 \times 5}$
A1: 1.20*
(b)

B1: Uses angles on a straight line formula. Score for $\pi-1.2$ or allow awrt 1.94 as evidence. If converted to degrees accept awrt 111.2° as evidence
M1: Uses a correct area formula for the sector or a correct area formula for the triangle.
You may follow through on an incorrectly found angle $D B C$
For example $2 \pi-1.2$ is acceptable but $180^{\circ}-1.2$ is not as it is using mixed units.
If the angle was found in degrees, the correct formula must be used.
For the triangle the correct combinations of sides and angle should be attempted.
e.g. You may see the area of triangle $A B D=\frac{1}{2} 5 \times($ their 6.29$) \times \sin 1.1$ or $\frac{1}{2} 6 \times($ their 6.29$) \times \sin ($ their $A D B)$
dM1: Adds together a correct area formula for the sector and a correct area formula for the triangle.
You may follow through on an incorrectly found angle $D B C$ or $A D B$
A1: Accept awrt 48.9 (do not need units)

Question Number	Scheme	Marks
6(a)	$\cos \angle B A C=\frac{12^{2}+10^{2}-6^{2}}{2 \times 12 \times 10} \Rightarrow \angle B A C=0.5223$	M1A1
(b)	$\begin{aligned} & \text { Arc } B D=r \theta=10 \times 0.5223 \\ & \text { Perimeter }=6+2+10 \times 0.5223=13.22(\mathrm{~m}) \end{aligned}$	$\begin{array}{\|l} \mathrm{M} 1 \\ \mathrm{dM} 1, \mathrm{~A} 1 \end{array}$
(c)	Area of sector $B A D=\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 10^{2} \times 0.5223 \quad(=26.116)$	(3) M1
	Area of triangle $A B C \frac{1}{2} a b \sin C=\frac{1}{2} \times 12 \times 10 \times \sin 0.5223 \quad(=29.932)$ Area of flowerbed $B C D=\frac{1}{2} \times 12 \times 10 \times \sin 0.5223-\frac{1}{2} \times 10^{2} \times 0.5223$	M1 dM1
		(4) (9 marks)

(a)

M1 Attempts use of the formula $6^{2}=10^{2}+12^{2}-2 \times 10 \times 12 \cos A$ or $\cos \angle B A C=\frac{12^{2}+10^{2}-6^{2}}{2 \times 12 \times 10}$ The sides must be in the correct "position" within the formula. Condone different notation Eg. θ

A1 $\angle B A C=$ awrt $0.5223 \quad$ The angle in degrees (awrt 29.9°) is A0
(b)

M1 Attempts arc formula: In radians uses $\operatorname{Arc} B D=r \theta=10 \times$ " $0.5223^{\prime \prime}$
In degrees uses $\operatorname{Arc} B D=\frac{\theta}{360} \times 2 \pi r=\frac{" 29.9^{\prime \prime}}{360} \times 2 \pi \times 10$
dM1 Dependent upon the arc formula having been used. It is for calculating the perimeter as $8+$ arc length.
A1 \quad Perimeter $=$ awrt $13.22(\mathrm{~m})$
(c)

M1 Attempts area of sector formula: Area of sector $B A D=\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 10^{2} \times{ }^{\prime \prime} 0.5223^{\prime \prime}$ In degrees uses Area of sector $B A D=\frac{\theta}{360} \times \pi r^{2}=\frac{" 29.9 "}{360} \times \pi \times 10^{2}$
M1 Attempts area of triangle formula: Area of triangle $A B C=\frac{1}{2} a b \sin C=\frac{1}{2} \times 12 \times 10 \times \sin " 0.5223$ " You may see Herons formula used with $S=\frac{10+6+12}{2}=(14)$ and $A=\sqrt{S(S-10)(S-6)(S-12)}$ Watch for other methods including the calculation of a perpendicular.
dM1 Dependent upon both correct formulae. It is scored for finding area of triangle - area of sector
A1 Allow awrt 3.81 or $3.82\left(\mathrm{~m}^{2}\right)$

Question Number	Scheme	Marks
4.(a)	Attempts Area $=\frac{1}{2} a b \sin C \Rightarrow 24 \sqrt{3}=\frac{1}{2} 3 x \times x \sin 60^{\circ}$	M1
	Uses $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$ oe $\Rightarrow x^{2}=32 \Rightarrow x=4 \sqrt{2}$	dM1A1*
(b)	Uses $B C^{2}=(12 \sqrt{2})^{2}+(4 \sqrt{2})^{2}-2(12 \sqrt{2})(4 \sqrt{2}) \cos 60^{\circ}$	M1
	$\Rightarrow B C^{2}=224 \Rightarrow B C=4 \sqrt{14}$	A1,A1
		[3] marks)

(a)

M1 Attempts to use Area $=\frac{1}{2} a b \sin C$ Score for sight of $24 \sqrt{3}=\frac{1}{2} 3 x \times x \sin 60^{\circ}$
dM1 Either using $24 \sqrt{3}=\frac{1}{2} 3 x \times x \sin 60^{\circ}$ with $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$ (which may be implied) to reach a form $x^{2}=k$
So sight of $x^{2}=\frac{16 \sqrt{3}}{\sin 60^{\circ}}$ oe $\Rightarrow x=4 \sqrt{2}$ would imply $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$ and $x^{2}=k$
Or sight of a correct simplified intermediate line followed by the correct answer.
Eg. $24 \sqrt{3}=\frac{1}{2} 3 x \times x \sin 60^{\circ} \Rightarrow 3 x^{2}=96 \Rightarrow x=4 \sqrt{2}$
It cannot be awarded for $24 \sqrt{3}=\frac{1}{2} 3 x \times x \times \frac{\sqrt{3}}{2} \Rightarrow x=4 \sqrt{2}$
A1* This is a show that and you must see $x=4 \sqrt{2}$ following $x^{2}=32$ OR $x^{2}=16 \times 2$ or $x=\sqrt{32}$ for the A1* to be scored
If you see a candidate start $41.57=\frac{1}{2} 3 x \times x \times 0.866 \Rightarrow x^{2}=32 \Rightarrow x=4 \sqrt{2}$ award M1, dM1, A0
Alternatively candidate can assume that $x=4 \sqrt{2}$ and attempt
$\frac{1}{2} 4 \sqrt{2} \times 12 \sqrt{2} \sin 60^{\circ}$ for M1, $\frac{1}{2} 4 \sqrt{2} \times 12 \sqrt{2} \times \frac{\sqrt{3}}{2}=24 \sqrt{2}$ for DM1 and make a statement for A1*
(b)

M1 Uses the cosine rule $B C^{2}=(4 \sqrt{2})^{2}+(12 \sqrt{2})^{2}-2(4 \sqrt{2})(12 \sqrt{2}) \cos 60^{\circ}$ Condone missing brackets Can be scored for $B C^{2}=(3 x)^{2}+(x)^{2}-2(3 x)(x) \cos 60^{\circ}$ It can be awarded for an attempt with their x Also accept the form $\cos 60^{\circ}=\frac{(12 \sqrt{2})^{2}+(4 \sqrt{2})^{2}-B C^{2}}{2(12 \sqrt{2})(4 \sqrt{2})}$
A1 $B C^{2}=224 \quad$ May be implied by $B C=\sqrt{224}$ or $4 \sqrt{14}$
A1 $\quad B C=4 \sqrt{14}$

If you see a candidate start $B C^{2}=(5.66)^{2}+(16.97)^{2}-2(5.66)(16.97) \cos 60^{\circ} \Rightarrow B C=4 \sqrt{14}$ award M1, A1, A0

Question number	Scheme	Marks
$\mathbf{5}$	$x^{2}+y^{2}-10 x+6 y+30=0$ (a)Uses any appropriate method to find the coordinates of the centre, e.g achieves $\underline{(x \pm 5)^{2}}+\underline{\underline{(y \pm 3)^{2}}}=\ldots$ Accept $(\pm 5, \pm 3)$ as indication of this.	M1

