edexcel ${ }^{\text {itizi}}$

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Statistics S1 (6683/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA040117
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATI CS

General I nstructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it’, unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	www.yesterdaysmathsexam.com Scheme	Marks
2		$\begin{array}{ll}\text { M1 } \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \\ & (4) \\ \text { Total } 4\end{array}$
	Notes	
	$1^{\text {st }} \mathrm{M} 1$ sub. 60.8 for y into a correct equation. Allow use of x or any other letter or expression for mean $1^{\text {st }}$ A1 for awrt 57.7 or $\frac{404}{7}$ (o.e.). Correct answer only is $2 / 2$ $2^{\text {nd }}$ M1 sub. 6.60 or 6.6 for y and ignoring the 20 Allow use of x or any other letter or expression for st. dev. $6.60^{2}=1.4^{2} x^{2}$ is M0 until we see them take a square root. $2^{\text {nd }}$ A1 for awrt 4.71 or $\frac{33}{7}$ (o.e.). Correct answer only is $2 / 2$	

Question Number	www.yesterdaysmathsexam.com Scheme	Marks
3	$r=\frac{31512.5}{\sqrt{42587.5 \times 25187.5}}=0.962 \quad \text { awrt } 0.962$	M1 A1 (2)
	r is close to 1 or a strong correlation. ["points are close to a straight line" isB0] [Just "positive" correlation is B0] [Use of "relationship" or "skew" not "correlation" is B0]	B1
	$b=\frac{31512.5}{42587.5}=0.739947 \ldots=0.740(3 \mathrm{dp}) \quad \mathbf{0 . 7 4 0} \text { (only) }$	M1 A1cao
		2)
	$a=1326.25-(0.7399 \ldots \times 2423.75) \quad[=-467.2 \quad$ or awrt -467$]$	M1
	So $\quad m=-467+0.74 v$	A1 (2)
	b is the money (spent) per visitor. (i.e. definition of a rate in words.)[ignore values] So each 1000 visitors generates an extra $£ 0.74$ million or each visitor spends $£ 740$ oe	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 ft } \end{array}$
	$\begin{aligned} & m=-467+0.74 \times 2500 \\ & m=1383(£ \text { million }) \end{aligned}$ awrt 1380	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$
		(2)
	As 2500 is within the range of the data set or it involves interpolation. The value of money spent is reliable	$\begin{array}{\|ll\|} \hline \text { B1 } & \\ \text { dB1 } & \text { (2) } \end{array}$
		Total 13
	Notes	
(a)	M1 for a correct expression for r. Ans only of 0.96 or awrt 0.96 is M1A0 Ans only of 0.962 or awrt 0.962 is M1A1. Do not allow fractions for A1	
(b)	B1 for comment implying strong correlation. (e.g. big/high/clear etc) B0 if $\|r\|>1$	
(c)	A1 A1 for 0.740 only in (c) or $b=0.740$ seen elsewhere (M1A0 for $\frac{2521}{3407}$ or awrt 0.74 here)	
(d)	M1 for 1326.25 - ('their b ' $\times 2423.75$) Condone fractions or awrt 1330 for \bar{m} and awrt 2420 for \bar{v} A1 for a correct equation in m and v with $a=$ awrt -467 and $b=$ awrt 0.74 Condone $\frac{2521}{3407}$ for b and $\frac{-1591740}{3407}$ for a. [Equation in y and x is A0]	
(e)	$1^{\text {st }} \mathrm{B} 1$ for a correct definition of the rate in words. Must state or imply "money per visitor" Allow alternative words or symbols e.g. $£$ or "pounds" for money, "people" for visitors etc	
	e.g. "each visitor spends $£ 740$ " is B1B1, " b is the extra money spent per visitor" is B1B0 [no values] " b is increase of $£ 0.74$ million in m as v increases by 1000 " is B0B1[$£$ for money but no "visitors"] "increase in \underline{m} as \underline{v} increases" is B0B0 [Idea of rate but letters not words and no numerical value of rate]	
(f)	M1 sub. $v=2500$ into their equation. Simply substituting 2500000 is M0 (unless adjusted eqn)	
(g)	$1^{\text {st }} \mathrm{B} 1$ for 2500 or 2500000 or visitors or v is in range. "it" is B0 unless v clearly im $2^{\text {nd }} \mathrm{dB} 1$ for stating it is reliable. Dependent on previous B mark being awarded "both v and m in range" or " 1380 in range" is B0 but use ISW so "interpolation since bot range" scores B1 for the "interpolation". "Not extrapolation" counts as "interpolation"	plied both in

Question Number	www.yesterdaysmathsexam.com Scheme	Marks
4 (a)		M1
(b)	$0.25 \times 0.98, \quad=\mathbf{0 . 2 4 5}\left(\text { or exact equiv. e.g. } \frac{49}{200}\right)$	M1A1 (2)
(c)	$0.25 \times 0.02+0.45 \times 0.03+0.3 \times 0.05, \quad=\mathbf{0 . 0 3 3 5}\left(\text { or exact equiv. e.g. } \frac{67}{2000}\right)$	M1A1 (2)
(d)	$\begin{aligned} {[\mathrm{P}(J \cup L \mid B)] } & =\frac{0.25 \times 0.02+0.3 \times 0.05}{0.0335} & & \text { or } \frac{0.0335-0.45 \times 0.03}{0.0335} \\ & =0.5970 \ldots & & \text { awrt } \mathbf{0 . 5 9 7} \text { (or } \frac{40}{67} \text { or exact equiv.) } \end{aligned}$	M1A1ft A1
		(3)
	Notes	Total 9
(a) (b) (c) (d)	Allow fractions or percentages throughout this question Allow $3+6$ tree diagram with the 6 correct "end" probs and labels to get $2 / 2\left(1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}\right.$ gets M1) M1 for $(3+6)$ tree drawn with $0.25,0.45,0.02,0.03,0.05$ on correct branches A1 for $0.3,0.98,0.97,0.95$ on the correct branches and labels, condone missing B^{\prime} s Correct answer only scores full marks for parts (b), (c) and (d) When using "their probability \boldsymbol{p} " for M1 and A1ft they must have $\mathbf{0}<\boldsymbol{p}<1$ M1 for $0.25 \times$ 'their 0.98 ' o.e. M1 for $0.25 \times$ their $0.02+0.45 \times$ their $0.03+$ their $0.3 \times$ their 0.05 Condone 1 transcription error. Or $1-(0.25 \times$ their $0.98+0.45 \times$ their $0.97+$ their $0.3 \times$ their 0.95$)$ M1 for use of conditional probability with their (c) as denominator. Also exactly 2 products on num' and at least one correct (or correct ft) or their (c) - one of the products from their (c). Ignore an incorrect expression inside their probability statement A1ft for $\frac{0.25 \times \text { their } 0.02+\text { their } 0.3 \times \text { their } 0.05}{\text { their }(\mathrm{c})}$ or $\frac{\text { their }(\mathrm{c})-0.45 \times \text { their } 0.03}{\text { their }(\mathrm{c})}$ or $\frac{0.02}{\text { their }(\mathrm{c})}$ A1 awrt 0.597 or exact fraction e.g. $\frac{40}{67}$	

Question Number	www.yesterdaysmathsexam.com Scheme	Marks
(a)(b)(c)(d)((e)(e)	$2 k+4 k+6 k+k(8-2)=1 \quad($ commas instead of + or a table OK if $18 k=1$ seen later) $\begin{equation*} k=\frac{1}{18} \tag{*} \end{equation*}$	M1 A1cso (2)
	$[2 k+4 k]=\frac{6}{18}=\frac{1}{3} \quad\left(\frac{1}{3}\right.$ or any exact numerical equivalent)	B1 (1)
	$\mathrm{E}(X)=\left(2 \times \frac{1}{9}\right)+\left(4 \times \frac{2}{9}\right)+\left(6 \times \frac{1}{3}\right)+\left(8 \times \frac{1}{3}\right) \text { or }(2 \times 2 k)+(4 \times 4 k)+(6 \times 6 k)+(8 \times 6 k)$	M1
	$=5 \frac{7}{9} \quad$ (or exact equivalent e.g. $\frac{52}{9}$)	A1 (2)
	$\mathrm{E}\left(X^{2}\right)=\left(4 \times \frac{1}{9}\right)+\left(16 \times \frac{2}{9}\right)+\left(36 \times \frac{1}{3}\right)+\left(64 \times \frac{1}{3}\right) \underline{\text { or }}(4 \times 2 k)+(16 \times 4 k)+(36 \times 6 k)+(64 \times 6 k)$	M1
	$=37 \frac{1}{3}$ (or exact equivalent e.g. $\frac{112}{3}$	A1 (2)
	$\operatorname{Var}(X)=37 \frac{1}{3}-\left(5 \frac{7}{9}\right)^{2} \quad\left[=3.95 \ldots \text { or } \frac{320}{81}\right]$	M1
	$\operatorname{Var}(3-4 X)=16 \times 3.95$.	M1
	$=$ awrt 63.2 (allow $\frac{5120}{81}$)	A1 (3)
		Total 10
	Notes	
(a)(c)(d)(e)	M1 for $2 k+4 k+6 k+k(8-2)=1 \quad$ A1 for $k=\frac{1}{18} \quad$ NB cso so no incorrect working seen or M1 for $2 \times \frac{1}{18}+4 \times \frac{1}{18}+6 \times \frac{1}{18}+\frac{1}{18}(8-2) \quad$ A1 for $=1$ and "therefore $k=\frac{1}{18}$ " If in parts (c), (d) and (e) there is a correct expression worthy of M1 but later they incorrectly go on and multiply or divide by some number n, then allow the M1 but mark their final answer (A0) Answers only in (b), (c), (d) and (e) score all the marks. M1 for an expression for $\mathrm{E}(X)$ with at least 3 correct terms (products) allow use of k e.g. 104k M1 for an expression for $\mathrm{E}\left(X^{2}\right)$ with at least 3 correct terms (products) allow use of k e.g. 672k A1 for any exact equivalent only. E.g. 37.3 is A0 but, of course, 37.3 is OK $1^{\text {st }} \mathrm{M} 1$ for $\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$ ft their answers to (c) and (d). Must see values used correctly. $2^{\text {nd }}$ M1 for statement " $4^{2} \times \operatorname{Var}(X)$ " seen or for $4^{2} \times$ their $\operatorname{Var}(X)$ provided their $\operatorname{Var}(X)>0$ Do not allow for $16 \times \mathrm{E}\left(X^{2}\right)$ but can score M0M1 NB condone $-4^{2} \times \operatorname{Var}(X)$ if the answer later becomes positive. A1 for exact fraction ($\frac{5120}{81}$ o.e.) or decimal approximation that is awrt 63.2 Beware: rounding to 3 sf in (c) (5.78) and (d) (37.3) gives 62.3 which could be misread as 63.2	

Question Number	www.yesterdaysmathsexam.com Scheme	Marks
6 (a)	$70-80$ group - width $\mathbf{0 . 5}(\mathrm{cm})$ $1.5 \mathrm{~cm}^{2}$ is 10 customers or $3.75 \mathrm{~cm}^{2}$ is 25 customers $\underline{\text { or }} 0.5 c=3.75$ or $\frac{2.5}{\frac{1}{3}}$ $70-80$ group - height 7.5 (cm)	$\begin{array}{ll}\text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \\ & \text { (3) }\end{array}$
	$\begin{aligned} \text { Median } & =(70)+\frac{13.5}{25} \times 10 \text { allow }(n+1)=(70)+\frac{14}{25} \times 10 \\ & =75.4(\text { or if using }(n+1) \text { allow } 75.6) \end{aligned}$	M1 A1 (2)
	$\left[\text { Mean }=\frac{6460}{85}\right]=76$	B1
	$\begin{aligned} \sigma & =\sqrt{\frac{529400}{85}-76^{2}} \\ & =21.2658 \ldots \ldots \quad(s=21.3920) \end{aligned}$ awrt 21.3	M1 A1
		(3)
	Coeff' of skewness $=\frac{3(76-75.4)}{21.2658 \ldots}=0.08464 \ldots \quad$ awrt $0.08 \quad$ (awrt 0.06 for 75.6)	M1 A1
	There is (very slight) positive skew or the data is almost symmetrical (or both) Any mention of "correlation" is B0	B1ft (3)
		Total 11
	Notes	
(a)	B1 for 0.5 M1 for one of the given statements or any method where "their width" \times "their height" $=3.75$ Correct height scores M1A1 independent of width so B0M1A1 is possible.	
(b)	M1 for a correct fraction: $+\frac{k}{25} \times 10$ where $k=13.5$ or 14 for $(n+1)$ case. NB may work down so look out for (80) $-\frac{11.5}{25} \times 10$ etc Beware: $69.5+\frac{13.5}{25} \times 11=75.4$	(but M0)
(c)	M1 for a correct expression with square root, ft their mean A1 for awrt 21.3 or, if clearly using s allow awrt 21.4. Must be evaluated...no surds	
(d)	M1 sub. their values into formula allow use of s but their σ or s must be >0 A1 for awrt 0.08 but accept 0.085 No fraction B1ft for a correct comment compatible with their coefficient. Allow "symmetrical" for \mid coeff" $\mid<0.25$ They may say it is "slightly skew" so omit "positive" but do not allow "negative" if coef" +ve Condone "strongly" positive skew.	

Question Number	www.yesterdaysmathsexam.com Scheme	Marks
	The random variable $H \sim$ height of females $\begin{aligned} \mathrm{P}(H>170) & =\mathrm{P}\left(Z>\frac{170-160}{8}\right) \quad[=\mathrm{P}(Z>1.25)] \\ & =1-0.8944 \\ & =0.1056 \quad(\text { calc } 0.1056498 \ldots) \quad \text { awrt } \mathbf{0 . 1 0 6} \text { (accept } 10.6 \%) \end{aligned}$	M1 M1 A1 (3)
	$\begin{aligned} \mathrm{P}(H>180) & =\mathrm{P}\left(Z>\frac{180-160}{8}\right) \quad[=1-0.9938] \\ & =0.0062 \quad(\text { calc } 0.006209 \ldots) \quad \text { awrt } 0.0062 \text { or } \frac{31}{5000} \end{aligned}$	M1 A1
	$[\mathrm{P}(H>180 \mid H>170)]=\frac{0.0062}{0.1056}$	M1
	$\begin{equation*} =0.0587 \quad \text { (calc } 0.0587760 \ldots \text {) awrt } \mathbf{0 . 0 5 8 7} \text { or } \mathbf{0 . 0 5 8 8} \tag{4} \end{equation*}$	A1
	$\mathrm{P}(H>h \mid H>170)(=0.5) \quad \text { or } \quad \frac{\mathrm{P}(H>h)}{\mathrm{P}(H>170)}(=0.5)$	M1
	$[\mathrm{P}(H>h)]=0.5 \times " 0.1056 "=0.0528(\text { calc } 0.0528249 \ldots) \text { or }[\mathrm{P}(H<h)]=0.9472$	A1ft
	$\frac{h-160}{8}=1.62$ (calc 1.6180592...)	M1 B1
	$h=$ awrt 173 cm awrt 173	A1 (5)
		Total 12
	Notes	
(a) (b) (c)	$1{ }^{\text {st }}$ M1 for attempt at standardising with 170,160 and 8 . Allow \pm i.e. for $\pm \frac{170-160}{8}$ $2^{\text {nd }}$ M1 for attempting $1-p$ where $0.8<p<1$. Correct answer only $3 / 3$ $1^{\text {st }}$ M1 for standardising with 180,160 and 8 $1^{\text {st }} \mathrm{A} 1$ for 0.0062 seen, maybe seen as part of another expression/calculation. $2^{\text {nd }}$ M1 using conditional probability with denom $=$ their (a) and num $<$ their denom. Values $2^{\text {nd }} \mathrm{A} 1$ for awrt 0.0587 or 0.0588 . Condone 5.87% or 5.88% or $\frac{31}{528}$ Correct answer only $4 / 4$ $1^{\text {st }}$ M1 for a correct conditional probability statement. Either line and don't insist on 0.5 $1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for $[\mathrm{P}(H>h)]=0.5 \times$ their (a) Award M1A1ft for correct evaluation of $0.5 \times \operatorname{their}(a)$ or sight of 0.0528 or better $2^{\text {nd }}$ M1 for attempt to standardise (\pm) with 160 and 8 and set equal to $\pm z$ value $(1.56<$ B1 for ($\mathrm{z}=$) awrt ± 1.62 (seen) $2^{\text {nd }} \mathrm{A} 1$ for awrt 173 but dependent on both M marks.	eeded. 5, ft (a) $z \mid<1.68)$

