

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE A Level Mathematics Statistics & Mechanics (9MA0/03)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018

Publications Code 9MA0_03_1806_MS

All the material in this publication is copyright © Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification/indicative content will not be exhaustive.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, a senior examiner must be consulted before a mark is awarded.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 100.
- 2. These mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- **bod** benefit of doubt
- **ft** follow through
- the symbol $\sqrt{}$ will be used for correct ft
- **cao** correct answer only
- **cso** correct solution only. There must be no errors in this part of the question to obtain this mark
- **isw** ignore subsequent working
- **awrt** answers which round to
- SC: special case
- **o.e.** or equivalent (and appropriate)
- **d** or **dep** dependent
- **indep** independent
- dp decimal places
- **sf** significant figures
- * The answer is printed on the paper or ag- answer given
- 4. All M marks are follow through.

A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but answers that don't logically make sense e.g. if an answer given for a probability is >1 or <0, should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Where a candidate has made multiple responses <u>and indicates which response</u> <u>they wish to submit</u>, examiners should mark this response. If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used. If no such alternative answer is provided but the response is deemed to be valid, examiners must escalate the response for a senior examiner to review.

Section A: STATISTICS

Qu 1					Sch	eme						Marks	AO
(a)	С	0	1	2	3	4	5	6	7	8		B1	1.2
	$\mathbf{P}(C=c)$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		B1ft	1.2
											1	(2)	
(b)	$P(C < 4) = \frac{4}{9}$	(acce	pt 0.44	14 or I	better)							B1	3.4
												(1)	
(c)	Probability low	er tha	n expe	ected s	sugges	sts mo	del is	<u>not</u> go	ood			B1ft	3.5a
		•1	1	C			.1					(1)	25
(d)	e.g. Cloud cov		•				onth a	nd pla	ce to j	place		B1 (1)	3.5c
	So e.g. use a r	ion-ur	morm	distri	DULIOI	L						(1) (5 mark	c)
							Note	5					.5)
(a)	1 st B1 for a con	rrect s	et of v	alues	for c	Alloy							
	2^{nd} B1ft for co						(,		with d	iscrata uni	form distri	a'n
	Maybe as a pr												
	clearly define				5 1 1 (2	$\mathbf{I} = \mathbf{X}$	9	01 0 <	$z \land z$	o prov		0, 1, 2,,	0 15
	clearly defined	u som	ewner	С.									
(b)	B1 for usin	g corr	ect mo	del to	$e^{\text{get} \frac{4}{\alpha}}$	(o.e	.)						
SC	Sample space							this al	low P	(C < 4)	$= \frac{3}{2}$ to set	ore B1 in ((b)
	~pic «piece	(-,	, •, •			(.) 101		10 11 1	(0	8 00 50		(0)
(c)	B1ft for con	nmen	t that s	states	that th	e mod	lel pro	posed	l is or	is not	a good one	based on	
	their n		-			-							
	(b) - 0.315 >										ite" etc		
	(b) – 0.315 ≤										1 • 4	.1 1.1	
	No prob in (b) No prob in (b)				-					r 0.5 a	ind rejects	the model	
	-		comm							erns.			
	-8	j							- F				
(d)						-	varia	tions i	n moi	nth or	location		
	Just say						C 1°CC	. 1			.1 1		
	Context & "no										onths <u>and</u> i bilities base		
	Context & "bi									-		-	cheres
	Just refined m												
	e.g. hi	gher p	robabi	ilities	for m	ore clo	oud co	ver <u>or</u>	lowe	r prob	abilities for		
	Continuous m	odel A	Any m	odel tl	hat is	based	on a c	ontinı	ious d	listribu	ition. e.g. r	ormal is B	0

Qu 2	Scheme	Marks	AO
(a)	$H_0: \rho = 0$ $H_1: \rho < 0$	B1	2.5
	Critical value: -0.6215 (Allow any cv in range $0.5 < cv < 0.75$)	M1	1.1a
	r < -0.6215 so significant result and there is evidence of a negative	A1	2.2b
	correlation between w and t	(3)	
(b)	e.g. As temperature increases people spend more time on the beach and less		2.4
	time shopping (o.e.)	B1	2.4
	Cines is show to 1 it is some istant with the sure section	(1) D1	2.4
(c)	Since r is close to -1 , it is consistent with the suggestion	B1 (1)	2.4
(d)	t will be the explanatory variable since sales are likely to depend on the		2.4
	temperature	B1	2.4
(a)	Every degree rise in temperature leads to a drop in weekly earnings of $\pounds 171$	(1) B1	3.4
(e)	Every degree rise in temperature leads to a drop in weekly earnings of £1/1	(1)	3.4
		(7 mar	ks)
	Notes		
(b)	 M1 for the critical value: sight of ±0.6215 or any cv such that 0.5 < cv < 0.7 A1 must reject H₀ on basis of comparing -0.915 with -0.6215 (if -0.915 < is seen then A0 but may use r o and mention "negative", "correlation/relationship" and at least "w" and "t" B1 for a suitable reason to explain negative correlation using the context given e.g. "As temperature drops people are more likely to go shopping (than to e.g. "As temperature increases people will be outside rather than in shops." A mere description in context of negative correlation is B0 SO e.g. "As temperature increases people don't want to go shopping/buy cloth e.g. "Less clothes needed as temp increases" is B0 	0.6215 .e. which n. the beach mes" is B0	1)"
(c)	B1 for a suitable reason e.g. "strong"/"significant"/"near perfect" "correlation and saying it is consistent with the suggestion. Allow "yes" followed by		
(d)	 B1 For identifying t and giving a suitable reason. Need idea that "w depends on t" or "w responds to t" or "t affects w" Allow t (temperature) affects the other variable etc Just saying "t is the independent variable" or "t explains change in w" is N. B. Suggesting causation is B0 e.g. "t causes w to decrease" 		
(e)	B1 for a description that conveys the idea of rate per degree Celsius. Must have 171, condone missing "£" sign.		

Qu 3	Scheme	Marks	AO
(a)	The <u>probability</u> of a dart hitting the target is <u>constant</u> (from child to child and	B1	1.2
	for each throw by each child) (o.e.)		
	The <u>throws</u> of each of the darts are <u>independent</u> (o.e.)	B1	1.2
		(2)	
(b)	$[P(H \ge 4) = 1 - P(H \le 3) = 1 - 0.9872 = 0.012795 =] $ awrt <u>0.0128</u>	B1	1.1b
		(1)	
(c)	$P(F = 5) = 0.9^4 \times 0.1, = 0.06561$	M1,	3.4
	= awrt 0.0656	A1	1.1b
		(2)	
(d)	n 1 2 10		
	$P(F = n) = 0.01$ $0.01 + \alpha$ $0.01 + 9\alpha$	M1	3.1b
			3.1a
	Sum of probs = 1 $\Rightarrow \frac{10}{2} [2 \times 0.01 + 9\alpha] = 1$	M1A1	5.1a 1.1b
		A 1	1.1b
	[i.e. $5(0.02 + 9\alpha) = 1$ or $0.1 + 45\alpha = 1$] so $\alpha = 0.02$	A1 (4)	1.10
(\mathbf{a})	P(F = 5 Thomas' model) = 0.09	(4) B1ft	3.4
(e)	$\Gamma(T = 5 $ model) = 0.09	(1)	5.4
(f)	<u>Peta's model assumes the probability of hitting target is constant</u> (o.e.)		
(1)	and <u>Thomas</u> ' model assumes this <u>probability increases</u> with each attempt(o.e.)	B1	3.5a
	and <u>model</u> assumes this <u>probability increases</u> with each attempt(o.e.)	(1)	
		(11 mark	(2)
	Notes	(-~)
(a)	1 st B1 for stating that the probability (or possibility or chance) is constant (or f	ixed or sa	me)
	2 nd B1 for stating that <u>throws</u> are <u>independent</u> ["trials" are independent is B0]		,
(b)	B1 for awrt 0.0128 (found on calculator)		
(c)	M1 for a probability expression of the form $(1-p)^4 \times p$ where 0		
	A1 for awrt 0.0656		
SC	Allow M1A0 for answer only of 0.066		
(d)	1^{st} M1 for setting up the distribution of F with at least 3 correct values of n and	P(F = n)	in
	terms of α . (Can be implied by 2 nd M1 or 1 st A1)		
	2^{nd} M1 for use of sum of probs = 1 and clear summation or use of arithmetic set	ries formul	a
	(allow 1 error or missing term). (Can be implied by 1 st A1)		
	1^{st} A1 for a correct equation for α		
	2^{nd} A1 for $\alpha = 0.02$ (must be exact and come from correct working)		
(e)	B1ft for value resulting from $0.01 + 4 \times$ "their α " (provided α and the answer		
	Beware If their answer is the same as their (c) (or a rounded version of their (c)) score E	80
(f)	B1 for a suitable comment about the probability of bitting the target		
(f) ALT	B1 for a suitable comment about the <u>probability</u> of hitting the target Allow idea that Peta's model suggests the dart may never hit the target but The	mas' save	that
(f) ALT	B1 for a suitable comment about the <u>probability</u> of hitting the target Allow idea that Peta's model suggests the dart may never hit the target but The it will hit at least once (in the first 10 throws).	omas' says	that

Qu 4	Scheme	Marks	AO
(a)	Convenience or opportunity [sampling]	B1	1.2
(b)	Quota [sampling] e.g. Take 4 people every 10 minutes	(1) B1 B1	1.1a 1.1b
(c)	Census	(2) B1	1.2
(d)	[58 - 26 =] <u>32</u> (min)	(1) B1 (1)	1.1b
(e)	$\mu = \frac{4133}{95} = 43.505263 \text{awrt} \underline{43.5} (\text{min})$	B1	1.1b
	$\mu = \frac{4133}{95} = 43.505263 \text{awrt } \underline{43.5} \text{ (min)}$ $\sigma_x = \sqrt{\frac{202294}{95} - \mu^2} = \sqrt{236.7026}$	M1	1.1b
	= 15.385 awrt <u>15.4</u> (min)	A1 (2)	1.1b
(f)	There are outliers in the data (or data is skew) which will affect mean and sd Therefore use median and IQR	(3) B1 dB1 (2)	2.4 2.4
(g)	Value of 20, LQ at 26 and outliers will not change or state that median and upper quartile are the values that <u>do</u> change	B1	1.1b
	More values now below 40 than above so Q_2 or Q_3 will change and be lower Both Q_2 and Q_3 will be lower	M1 A1	2.1 2.4
		(3) (13 mark	
	Notes		<u>(5)</u>
(b)	 1st B1 for quota (sampling) mentioned ("Stratified" or "systematic" or "random 2nd B1 for a description of how such a system might work, requires suitable strate.g. time slots, departments, gender, age groups, distance travelled etc Suggestion of randomness is B0 		
(e)	B1 for a correct mean (awrt 43.5)		
	M1 for a correct expression for the sd (including $$)ft their mean A1 for awrt 15.4 (Allow <i>s</i> = 15.4667 awrt 15.5)		
(f)	1^{st} B1 for acknowledging <u>outliers</u> or <u>skewness</u> are a problem for <u>mean and sd</u> "extreme values"/"anomalies" OK May be implied by saying median and IQR if We need to see mention of "outliers", "skewness" and the problem so "data is sh median and IQR" is B0 unless mention that they are not affected by extreme val and standard deviation can be "inflated" by the positive skew etc 2^{nd} dB1 dep on 1^{st} B1 for therefore choosing <u>median and IQR</u>	kewed so u	se
(g)	B1 for identifying 2 of these 3 groups of unchanged values or stating only Q_2 and Q_2 for explaining that median or UQ should be lower. E.g. the 2 values have moved to below 40 (or 58) and therefore more than 50% (more than 75% below 58) or an argument to show that the other 3 values are Allow arrows on box plot provided statement in words about increased % below A1 for stating median and UQ are both lower with clear evidence of M1 score	below 40 the same. w 40 or 58	or (o.e.)
	[If lots of values on 40 then median might not change but, since two values <u>do</u> c would change. If this meant that 92 became an outlier then we would have a new upper whisker and an extra outlier so effectively 3 values are altered. So median	w value for	-

Qu 5	Scheme	Marks	AO
(a)	P(L > 16) = 0.69146 awrt 0.691	B1	1.1b
		(1)	
(b)	$P(L > 20 L > 16) = \frac{P(L > 20)}{P(L > 16)}$	M1	3.1b
		A1ft,	1.1b
	$= \frac{0.308537}{(a)} \underline{\text{or}} \frac{1-(a)}{(a)}, = 0.44621$	A1	1.1b
	For calc to work require $(0.44621)^4 = 0.03964$ awrt <u>0.0396</u>	dM1	2.1
		A1 (5)	1.1b
(c)	Require: $[P(L > 4)]^2 \times [P(L > 20 L > 16)]^2$	M1 (5)	1.1a
	$= (0.99976)^2 \times ("0.44621")^2$	A1ft	1.1b
	= 0.19901 awrt <u>0.199</u> (*)	A1cso*	1.1b
(d)	$H_0: \mu = 18$ $H_1: \mu > 18$	(3) B1	2.5
	$\overline{L} \sim N\left(18, \left(\frac{4}{\sqrt{20}}\right)^2\right)$	M1	3.3
	P(L > 19.2) = P(Z > 1.3416) = 0.089856	A1	3.4
	(0.0899 > 5%) or $(19.2 < 19.5)$ or $1.34 < 1.6449$ so not significant Insufficient evidence to support Alice's claim (or belief)	A1 A1	1.1b 3.5a
	insumerent evidence to support rince's claim (of bench)	(5)	5.5u
		(14 mar	ks)
		015	
(a)	B1 for evaluating probability using their calculator (awrt 0.691) Accept 0.69	915	
(b)	1^{st} M1for a first step of identifying a suitable conditional probability (either 1^{st} A1ftfor a ratio of probabilities with numerator = awrt 0.309 or 1 - (a) and 2^{nd} A1for awrt 0.446 (o.e.) Accept 0.4465 (from $\frac{0.3085}{0.691}$ = 0.44645)		heir (a)
	NB $\frac{P(16 < L < 20)}{P(L > 16)} = 0.5538$ scores M1A1A1 when they do $1 - 0.5538 = 0$.	4462	
	2^{nd} M1 (dep on 1 st M1) for 2 nd correct step i.e. (their 0.446) ⁴ or X~B(4, "0.43 rd A1 for awrt 0.0396	146") and l	P(X = 4)
(c)	1^{st} M1for a correct approach to solving the problem (May be implied by L^{st} A1ft 1^{st} A1ftfor P($L > 4$) = awrt 0.9998 used and ft their 0.44621 in correct expr		
	If use $P(L > 20) = 0.3085.$ as 0.446 in (b) then M1 for $(0.3085.)^2 \times [P(L > 4)]$		s above
*	2 nd A1cso for 0.199 or better with clear evidence of M1 [NB $(0.4662)^2 = 0.1$ Must see M1 scored by correct expression in symbols or values	99 is M	
(d)	B1 for both hypotheses in terms of μ .	. /	
	M1 for selecting a suitable model. Sight of <u>normal</u> , <u>mean</u> 18, <u>sd</u> $\frac{4}{\sqrt{20}}$ (o.e.) of	or <u>va</u> riance	= 0.8
	1^{st} A1 for using the model correctly. Allow awrt 0.0899 or 0.09 from correct p		
ALT	CR $(\overline{L}) > 19.471$ (accept awrt 19.5) <u>or</u> CV of 1.6449 (or better: calc		
	2^{nd} A1 for correct non-contextual conclusion. Wrong comparison or contradictions A		-
	Error giving 2 nd A0 implies 3 rd A0 but just a correct contextual conclusion car	score A1A	
	3^{rd} A1 dep on M1 and 1^{st} A1 for a correct contextual conclusion mentioning <u>A</u>		n /belief
	or there is insufficient evidence that the mean <u>lifetime</u> is more than 18 l	nours	

Section B: MECHANICS

Question	Scheme	Marks	AOs
6.	Integrate v w.r.t. time	M1	1.1a
	$\mathbf{r} = 2t^{\frac{1}{2}}\mathbf{i} - 2t^{2}\mathbf{j} \ (+\mathbf{C})$	A1	1.1b
	Substitute $t = 4$ and $t = 1$ into their r	M1	1.1b
	$t = 4, \mathbf{r} = 4\mathbf{i} - 32\mathbf{j}(+\mathbf{C}); t = 1, \mathbf{r} = 2\mathbf{i} - 2\mathbf{j}(+\mathbf{C}) \text{ or } (4, -32); (2, -2)$	A1	1.1b
	$\sqrt{2^2 + (-30)^2}$	M1	1.1b
	$\sqrt{904} = 2\sqrt{226}$	A1	1.1b
		(6)	
		(6 1	narks)
Notes: Allow	column vectors throughout		
M1: At least	one power increasing by 1.		
A1: Any cor	rect (unsimplified) expression		
	we attempted to integrate v . Substitute $t = 4$ and $t = 1$ into their r to produce 2 v working with coordinates).	vectors (or 2	2
A1: 4i – 32j	$\mathbf{i}(\mathbf{+C})$ and $2\mathbf{i}-2\mathbf{j}(\mathbf{+C})$ or $(4,-32)$ and $(2,-2)$. These can be seen or impli-	ed.	
M1: Attempt	t at distance of form $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ for their points. Must have 2 nor	n zero terms	S.
A1: $\sqrt{904}$ =	$2\sqrt{226}$ or any equivalent surd (exact answer needed)		

Question	Scheme	Marks	AOs
7(a)	Resolve vertically	M1	3.1b
	$R + 40\sin\alpha = 20g$	A1	1.1b
	Resolve horizontally	M1	3.1b
	$40\cos\alpha - F = 20a$	A1	1.1b
	F = 0.14R	B1	1.2
	$a = 0.396 \text{ or } 0.40 \text{ (m s}^{-2})$	A1	2.2a
		(6)	
(b)	Pushing will increase R which will increase available F	B1	2.4
	Increasing F will decrease $a *$ GIVEN ANSWER	B1*	2.4
		(2)	

(8 marks)

Notes:

(a)

M1: Resolve vertically with usual rules applying

A1: Correct equation. Neither g nor $\sin a$ need to be substituted

M1: Apply F = ma horizontally, with usual rules

A1: Neither F nor $\cos \partial$ need to be substituted

B1: F = 0.14R seen (e.g. on a diagram)

A1: Either answer

(b)

B1: Pushing increases R which produces an increase in available (limiting) friction

B1: *F* increase produces an <u>*a* decrease (need to see this)</u>

N.B. It is possible to score B0 B1 but for the B1, some "explanation" is needed to say why friction is increased e.g. by pushing into the ground.

www.yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
8(a)	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$: $(7\mathbf{i} - 10\mathbf{j}) = 2(2\mathbf{i} - 3\mathbf{j}) + \frac{1}{2}\mathbf{a}2^2$	M1	3.1b
	a = (1.5i - 2j)	A1	1.1b
	$ \mathbf{a} = \sqrt{1.5^2 + (-2)^2}$	M1	1.1b
	$= 2.5 \text{ m s}^{-2} * \text{ GIVEN ANSWER}$	A1*	2.1
		(4)	
(b)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t = (2\mathbf{i} - 3\mathbf{j}) + 2(1.5\mathbf{i} - 2\mathbf{j})$	M1	3.1b
	=(5i - 7j)	A1	1.1b
	$\mathbf{v} = (5\mathbf{i} - 7\mathbf{j}) + t(4\mathbf{i} + 8.8\mathbf{j}) = (5 + 4t)\mathbf{i} + (8.8t - 7)\mathbf{j}$ and (5 + 4t) = (8.8t - 7)	M1	3.1b
	t = 2.5 (s)	A1	1.1b
		(4)	

(8 marks)

Notes: Allow column vectors throughout

(a)

No credit for individual component calculations

M1: Using a complete method to obtain the acceleration. N.B. Equation, in **a** only, could be obtained by two integrations

ALTERNATIVE

M1: Use velocity at half-time (t = 1) = Average velocity over time period

So at
$$t = 1$$
, $\mathbf{v} = \frac{1}{2}(7\mathbf{i} - 10\mathbf{j})$ so $\mathbf{a} = \frac{1}{2}(7\mathbf{i} - 10\mathbf{j}) - (2\mathbf{i} - 3\mathbf{j})$

N.B. could see $(7\mathbf{i} - 10\mathbf{j}) = (4\mathbf{i} - 6\mathbf{j}) + 2\mathbf{a}$ as first line of working

A1: Correct a vector

M1: Attempt to find magnitude of their **a** using form $\sqrt{a^2 + b^2}$

A1*: Correct GIVEN ANSWER obtained correctly

(b)

M1: Using a complete method to obtain the velocity at A e.g. by use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with t = 2 and $\mathbf{v} = \mathbf{v} + \mathbf{a}t$ with t = 2 and $\mathbf{v} = \mathbf{v} + \mathbf{a}t$

 $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}$ and their \mathbf{a}

OR: by use of $\mathbf{s} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$

OR: by integrating their **a**, with addition of C = 2i - 3j, and putting t = 2

A1: correct vector

M1: Complete method to find equation in *t* only

e.g. by using $\mathbf{v} = \mathbf{u} + \mathbf{a}t$, with their \mathbf{u} and equating \mathbf{i} and \mathbf{j} components

OR: by integrating $(4\mathbf{i} + 8.8\mathbf{j})$, with addition of a constant, and equating \mathbf{i} and \mathbf{j} components.

N.B. Must be equating **i** and **j** components of <u>a velocity vector</u> and must be their velocity at A, to give an equation in t only for this M mark

A1: 2.5 (s)

(b) $\frac{5Mg(3x+a)}{2a \cdot \frac{3}{5}} = \frac{5Mg(3x+a)}{6a} * \text{ GIVEN ANSWER} \qquad A1* \qquad 2.1$ (3) (b) $\frac{5Mg(3x+a)}{6a} \cos a = 2Mg \text{OR} \qquad 2Mg.2a \tan a = Mga + 3Mgx \qquad M1 \qquad 3.1b$	Question	Scheme	Marks	AOs
$T = \frac{Mg(a + 3x)}{2a + \frac{3}{5}} = \frac{5Mg(3x + a)}{6a} * \text{ GIVEN ANSWER}$ $A1* 2.1$ (3) (b) $\frac{5Mg(3x + a)}{6a} \cos \beta = 2Mg \text{ OR } 2Mg.2a \tan \alpha = Mga + 3Mgx$ $M1 3.1b$ $x = \frac{2a}{3}$ (c) (c) $\frac{\text{Resolve vertically OR Moments about B}}{Y = 3Mg + Mg} - \frac{5Mg(3.2g + a)}{6a} \sin \beta 2aY = Mga + 3Mg(2a - \frac{2a}{3})}$ $A1\text{ ft} 1.1b$ $Y = 3Mg + Mg - \left(\frac{2Mg}{\cos \alpha}\right)\sin \alpha$ $Y = \frac{5Mg}{2}$ $A1 1 1.1b$ $N.B. May use Rsin \beta \text{ for } Y \text{ and/or } R\cos \beta \text{ for } X \text{ throughout}$ $\tan \beta = \frac{Y}{X} \text{ or } \frac{R \sin \beta}{R \cos \beta} = \frac{5Mg}{2Mg}$ $A1 2.2a$ (d) $\frac{5Mg(3x + a)}{6a} \leq 5Mg \text{ and solve for } X$ $A1 2.4$ $\frac{x \leq \frac{5a}{3}}{5} \text{ or } Y \text{ and/or } R \text{ or } Ha \text{ or } X \text{ or } A1 2.2a$ $A1 2.2a$ $A1 2.2a$ $A1 3.1b$ $A1 4 2.4a$	9(a)	Moments about A (or any other complete method)	M1	3.3
(b) $\frac{5Mg(3x+a)}{6a}\cos \partial = 2Mg OR 2Mg.2a \tan \alpha = Mga + 3Mgx M1 3.1b$ $x = \frac{2a}{3} A1 2.2a$ (c) Resolve vertically OR Moments about B M1 3.1b $Y = 3Mg + Mg - \frac{5Mg(3.2\frac{a}{3} + a)}{6a}\sin \partial - 2aY = Mga + 3Mg(2a - \frac{2a}{3})$ Alft 1.1b Or: $Y = 3Mg + Mg - \left(\frac{2Mg}{\cos \alpha}\right)\sin \alpha$ $Y = \frac{5Mg}{2} A1 1.1b$ N.B. May use $R\sin\beta$ for Y and/or $R\cos\beta$ for X throughout A1 1.1b N.B. May use $R\sin\beta$ for Y and/or $R\cos\beta$ for X throughout A1 2.2a (c) $\sin \beta = \frac{Y}{X} \text{or } \frac{R\sin\beta}{R\cos\beta} = \frac{5Mg}{2}$ (d) $\frac{5Mg(3x+a)}{6a} \le 5Mg$ and solve for x M1 2.4 $x \le \frac{5a}{3}$ A1 2.4 For rope not to break, block can't be more than $\frac{5a}{3}$ from A oe Or just: $x \le \frac{5a}{3}$, if no incorrect statement seen. B1 A1 2.4		$T2a\sin \partial = Mga + 3Mgx$	A1	1.1b
(b) $\frac{5Mg(3x+a)}{6a}\cos \partial = 2Mg OR 2Mg.2a \tan \alpha = Mga + 3Mgx \qquad M1 \qquad 3.1b$ $x = \frac{2a}{3} \qquad A1 \qquad 2.2a$ (c) Resolve vertically OR Moments about B M1 3.1b $Y = 3Mg + Mg - \frac{5Mg(3.2a + a)}{6a}\sin \partial - 2aY = Mga + 3Mg(2a - \frac{2a}{3})$ A1ft 1.1b Or: $Y = 3Mg + Mg - \left(\frac{2Mg}{\cos \alpha}\right)\sin \alpha$ $Y = \frac{5Mg}{2} \qquad A1 \qquad 1.1b$ N.B. May use $R\sin \beta$ for Y and/or $R\cos \beta$ for X throughout A1 1.1b N.B. May use $R\sin \beta$ for Y and/or $R\cos \beta$ for X throughout A1 1.1b $\frac{an \beta = \frac{Y}{X} or \frac{R\sin \beta}{R\cos \beta} = \frac{5Mg}{2} A1 \qquad 2.2a}{(5)}$ (d) $\frac{5Mg(3x+a)}{6a} \le 5Mg \text{ and solve for x} \qquad M1 \qquad 2.4$ $\frac{x \le \frac{5a}{3}}{x \le 3}, \text{ if no incorrect statement seen.}$ N.B. If the correct inequality is not found, their comment must mention distance from A'.		$T = \frac{Mg(a+3x)}{2a \cdot \frac{3}{5}} = \frac{5Mg(3x+a)}{6a} * \text{GIVEN ANSWER}$	A1*	2.1
x = $\frac{2a}{3}$ A12.2a(c)Resolve verticallyORMoments about BM13.1bY = $3Mg + Mg - \frac{5Mg(3, \frac{2}{3} + a)}{6a} \sin \beta$ $2aY = Mga + 3Mg(2a - \frac{2a}{3})$ A1ft1.1bOr: Y = $3Mg + Mg - \left(\frac{2Mg}{\cos \alpha}\right)\sin \alpha$ A1ft1.1bWith NB. May use $R\sin \beta$ for Y and/or $R\cos \beta$ for X throughoutA11.1b $Ian \beta = \frac{Y}{X}$ or $\frac{R\sin \beta}{R\cos \beta} = \frac{5Mg}{2Mg}$ M13.4 $= \frac{5}{4}$ A12.2a(d) $\frac{5Mg(3x+a)}{6a} \le 5Mg$ and solve for xM12.4For rope not to break, block can't be more than $\frac{5a}{3}$ from A oeB1A12.4NB. If the correct inequality is not found, their comment must mention 'distance from A'.B1A12.4			(3)	
(c) Resolve vertically OR Moments about B M1 3.1b $Y = 3Mg + Mg - \frac{5Mg(3.\frac{2a}{3} + a)}{6a} \sin \partial 2aY = Mga + 3Mg(2a - \frac{2a}{3})$ A1ft 1.1b Or: $Y = 3Mg + Mg - \left(\frac{2Mg}{\cos \alpha}\right) \sin \alpha$ A1ft 1.1b NB. May use $R\sin \beta$ for Y and/or $R\cos \beta$ for X throughout A1 1.1b NB. May use $R\sin \beta$ for Y and/or $R\cos \beta$ for X throughout $Ian \beta = \frac{Y}{X} \text{ or } \frac{R\sin \beta}{R\cos \beta} = \frac{\frac{5Mg}{2}}{2Mg}$ A1 2.2a (6) (d) $\frac{5Mg(3x+a)}{6a} \le 5Mg$ and solve for x $x \le \frac{5a}{3}$ A1 2.4 For rope not to break, block can't be more than $\frac{5a}{3}$ from A oe Or just: $x \le \frac{5a}{3}$, if no incorrect statement seen. NB. If the correct inequality is not found, their comment must mention 'distance from A'.	(b)	$\frac{5Mg(3x+a)}{6a}\cos a = 2Mg \qquad \text{OR} \qquad 2Mg.2a\tan \alpha = Mga + 3Mgx$	M1	3.1b
(c)Resolve verticallyORMoments about BM13.1b $Y = 3Mg + Mg - \frac{5Mg(3.\frac{2g}{3} + a)}{6a} \sin \beta$ $2aY = Mga + 3Mg(2a - \frac{2a}{3})$ A1ft1.1bOr: $Y = 3Mg + Mg - \left(\frac{2Mg}{\cos \alpha}\right) \sin \alpha$ $Y = \frac{5Mg}{2}$ A11.1bNB. May use $R \sin \beta$ for Y and/or $R \cos \beta$ for X throughoutA11.1b $\tan \beta = \frac{Y}{X}$ or $\frac{R \sin \beta}{R \cos \beta} = \frac{5Mg}{2}$ A12.2a(d) $\frac{5Mg(3x+a)}{6a} \le 5Mg$ and solve for xM12.4 $x \le \frac{5a}{3}$ A12.4For rope not to break, block can't be more than $\frac{5a}{3}$ from A oeB1A12.4NB. If the correct inequality is not found, their comment must mention 'distance from A'.B1A12.4		$x = \frac{2a}{3}$	A1	2.2a
(c) $Y = 3Mg + Mg - \frac{5Mg(3, \frac{2a}{3} + a)}{6a} \sin \beta 2aY = Mga + 3Mg(2a - \frac{2a}{3})$ Alft 1.1b Or: $Y = 3Mg + Mg - \left(\frac{2Mg}{\cos\alpha}\right)\sin\alpha$ $Y = \frac{5Mg}{2}$ Al 1 1.1b N.B. May use $R\sin\beta$ for Y and/or $R\cos\beta$ for X throughout $Ian \beta = \frac{Y}{X} \text{ or } \frac{R\sin\beta}{R\cos\beta} = \frac{5Mg}{2Mg}$ Al 1 3.4 $= \frac{5}{4}$ Al 2.2a (5) (d) $\frac{5Mg(3x + a)}{6a} \le 5Mg$ and solve for x $K = \frac{5a}{3}$ Al 2.4 For rope not to break, block can't be more than $\frac{5a}{3}$ from A oe Or just: $x \le \frac{5a}{3}$, if no incorrect statement seen. N.B. If the correct inequality is not found, their comment must mention 'distance from A'.			(2)	
Or: $Y = 3Mg + Mg - \left(\frac{2Mg}{\cos \alpha}\right)\sin \alpha$ Alff1.16 $Y = \frac{5Mg}{2}$ A11.16N.B. May use $R\sin\beta$ for Y and/or $R\cos\beta$ for X throughoutA11.16 $\tan \beta = \frac{Y}{X}$ or $\frac{R\sin\beta}{R\cos\beta} = \frac{5Mg}{2}$ M13.4 $= \frac{5}{4}$ A12.2a(5)(d) $\frac{5Mg(3x+a)}{6a} \le 5Mg$ and solve for xM12.4For rope not to break, block can't be more than $\frac{5a}{3}$ from A oeOr just: $x \le \frac{5a}{3}$, if no incorrect statement seen.B1 A12.4N.B. If the correct inequality is not found, their comment must mention 'distance from A'.	(c)		M1	3.1b
$\frac{1}{1.10}$ N.B. May use $Rsin \beta$ for Y and/or $Rcos \beta$ for X throughout $\frac{1}{1.10}$ N.B. May use $Rsin \beta$ for Y and/or $Rcos \beta$ for X throughout $\frac{1}{1.10}$			A1 ft	1.1b
$\tan \beta = \frac{Y}{X} \text{or } \frac{R \sin \beta}{R \cos \beta} = \frac{1}{2Mg}$ $= \frac{5}{4}$ $(d) \qquad \qquad$		L Z	A1	1.1b
4(5)(d) $\frac{5Mg(3x+a)}{6a} \le 5Mg$ and solve for xM12.4 $x \le \frac{5a}{3}$ A12.4For rope not to break, block can't be more than $\frac{5a}{3}$ from A oeA12.4Or just: $x \le \frac{5a}{3}$, if no incorrect statement seen.B1A12.4N.B. If the correct inequality is not found, their comment must mention 'distance from A'.B1A12.4		$\tan \beta = \frac{Y}{X} \text{ or } \frac{R \sin \beta}{R \cos \beta} = \frac{\frac{5Mg}{2}}{2Mg}$	M1	3.4
(d) $\frac{5Mg(3x+a)}{6a} \le 5Mg$ and solve for xM12.4 $x \le \frac{5a}{3}$ A12.4For rope not to break, block can't be more than $\frac{5a}{3}$ from A oeA12.4Or just: $x \le \frac{5a}{3}$, if no incorrect statement seen.B1 A12.4N.B. If the correct inequality is not found, their comment must mention 'distance from A'.B1 A12.4		$=\frac{5}{4}$	A1	2.2a
$6a$ A12.4 $x \le \frac{5a}{3}$ A12.4For rope not to break, block can't be more than $\frac{5a}{3}$ from A oeB1A1Or just: $x \le \frac{5a}{3}$, if no incorrect statement seen.B1A12.4N.B. If the correct inequality is not found, their comment must mention 'distance from A'.B1A12.4			(5)	
Joint Solution	(d)	$\frac{5Mg(3x+a)}{6a} \le 5Mg \text{and solve for } x$	M1	2.4
Or just: $x \le \frac{5a}{3}$, if no incorrect statement seen.B1 A12.4N.B. If the correct inequality is not found, their comment must mention 'distance from A'.Correct inequality is not found, their comment must mentionCorrect inequality is not found, their comment must mention		$x \le \frac{5a}{3}$	A1	2.4
N.B. If the correct inequality is not found, their comment must mention 'distance from <i>A</i> '.		For rope not to break, block can't be more than $\frac{5a}{3}$ from A oe		
'distance from A'.		Or just: $x \le \frac{5a}{3}$, if no incorrect statement seen.	B1 A1	2.4
(3)				
			(3)	

Notes:

(a)

M1: Using M(A), with usual rules, or any other complete method to obtain an equation in a, M, x and T only. A1: Correct equation

A1*: Correct PRINTED ANSWER, correctly obtained, need to see $\sin \alpha = \frac{3}{5}$ used.

(b)

M1: Using an appropriate strategy to find x. e.g. Resolve horizontally with usual rules applying OR Moments about C. Must use the given expression for T.

A1: Accept 0.67*a* or better

(c)

M1: Using a complete method to find Y (or $R\sin\beta$) e.g. resolve vertically or Moments about B, with usual rules

A1 ft: Correct equation with their x substituted in T expression or using $T = \frac{2Mg}{\cos q}$

A1:
$$Y(\text{ or } R\sin\beta) = \frac{5Mg}{2} \text{ or } 2.5Mg \text{ or } 2.50Mg$$

M1: For finding an equation in tan β only using $\tan \beta = \frac{Y}{Y}$ or $\tan \beta = \frac{X}{Y}$

This is independent but must have found a Y.

A1: Accept $\frac{-5}{4}$ if it follows from their working.

(**d**)

M1: Allow T = 5Mg or T < 5Mg and solves for x, showing all necessary steps (M0 for T > 5Mg) A1: Allow $x = \frac{5a}{3}$ or $x < \frac{5a}{3}$. Accept 1.7*a* or better. B1: Treat as A1. For any appropriate equivalent fully correct comment or statement. E.g. maximum value of

x is $\frac{5a}{3}$

Question	Scheme	Marks	AOs
10(a)	Using the model and vertical motion: $0^2 = (U \sin a)^2 - 2g (3 - 2)$	M1	3.3
	$U^2 = \frac{2g}{\sin^2 a} * \text{ GIVEN ANSWER}$	A1*	2.2a
		(2)	
(b)	Using the model and horizontal motion: $s = ut$	M1	3.4
	$20 = Ut \cos a$	A1	1.1b
	Using the model and vertical motion: $s = ut + \frac{1}{2}at^2$	M1	3.4
	$-\frac{5}{4} = Ut\sin a - \frac{1}{2}gt^2$	A1	1.1b
	sub for t: $-\frac{5}{4} = U \sin \alpha \left(\frac{20}{U \cos \alpha}\right) - \frac{1}{2} g \left(\frac{20}{U \cos \alpha}\right)^2$	M1 (I)	3.1b
	sub for U^2	M1(II)	3.1b
	$-\frac{5}{4} = 20\tan a - 100\tan^2 a$	A1(I)	1.1b
	$(4\tan a - 1)(100\tan a + 5) = 0$	M1(III)	1.1b
	$\tan a = \frac{1}{4} \triangleright a = 14^{\circ}$ or better	A1(II)	2.2a
		(9)	
	N.B. For the last 5 marks, they may set up a quadratic in <i>t</i> , by substituting for $U\sin\alpha$ first, then solve the quadratic to find the value of <i>t</i> , then use $20 = Ut\cos\alpha$ to find α . The marks are the same but earned in a different order. Enter on ePen in the corresponding M and A boxes above, as indicated below.		
	Sub for $U\sin\alpha$ to give equation in t only	M1(II)	
	$-\frac{5}{4} = \sqrt{2gt} - \frac{1}{2}gt^2$	A1(I)	
	Solve for <i>t</i>	M1(III)	
	$t = \frac{5}{\sqrt{2g}}$ or 1.1 or 1.13 and use $20 = Ut \cos a$	M1(I)	
	$\alpha = 14^{\circ}$ or better	A1(II)	
(b)	ALTERNATIVE		

	Using the model and horizontal motion: $s = ut$	M1	3.4
	$20 = Ut \cos a$	A1	1.1b
	A to top: $s = vt - \frac{1}{2}at^2$ and top to T: $s = ut + \frac{1}{2}at^2$		
	$1 = \frac{1}{2}gt_1^2 \implies t_1 = \sqrt{\frac{2}{g}} \qquad \text{and} \qquad \frac{9}{4} = \frac{1}{2}gt_2^2 \implies t_2 = \frac{3}{\sqrt{2g}}$ Total time $t = t_1 + t_2$	M1	3.4
	$= \sqrt{\frac{2}{g}} + \frac{3}{\sqrt{2g}} (=\frac{5}{\sqrt{2g}})$	A1	1.1b
	$20 = U \frac{5}{\sqrt{2g}} \cos \alpha \qquad (\text{sub. for } t)$	M1	3.1b
	$20 = \sqrt{\frac{2g}{\sin^2 \alpha}} \frac{5}{\sqrt{2g}} \cos \alpha (\text{sub. for } U)$	M1	3.1b
	$\tan a = \frac{1}{4}$	A1	1.1b
	Solve for α	M1	1.1b
	$\triangleright a = 14^{\circ}$ or better	A1	2.2a
		(9)	
(c)	 The target will have dimensions so in practice there would be a range of possible values of α Or There will be air resistance Or The ball will have dimensions Or Wind effects Or Spin of the ball 	B1	3.5b
		(1)	
(d)	Find U using their α e.g. $U = \sqrt{\frac{2g}{\sin^2 \alpha}}$	M1	3.1b
	Use $20 = Ut \cos a$ (or use vertical motion equation)	A1 M1	1.1b
	$t = \frac{5}{\sqrt{2g}}$ or 1.1 or 1.13	B1 A1	1.1b
		(3)	
(d)	ALTERNATIVE		

	A to top: $s = vt - \frac{1}{2}at^2$ and top to T: $s = ut + \frac{1}{2}at^2$	M1	3.1b
	$1 = \frac{1}{2}gt_1^2 \implies t_1 = \sqrt{\frac{2}{g}} \qquad \text{and} \qquad \frac{9}{4} = \frac{1}{2}gt_2^2 \implies t_2 = \frac{3}{\sqrt{2g}}$ Total time $t = t_1 + t_2$	A1 M1	1.1b
	$= -\sqrt{\frac{2}{g}} + \frac{3}{\sqrt{2g}} (=\frac{5}{\sqrt{2g}}) = 1.1 \text{ or } 1.13 \text{ (s)}$	B1 A1	1.1b
		(3)	
		(15)	narks)
Notes:			
	other complete method to obtain an equation in U , g and ∂ only of GIVEN ANSWER		
(b)			
M1: Using l	porizontal motion		
	et equation		
M1: Using		$\pm 0.75 \text{ or } \pm 2$	2.25 01
M1: Using ±2.75	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or	$\pm 0.75 \text{ or } \pm 2$	2.25 or
±2.75 A1: Correc	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation	$\pm 0.75 \text{ or } \pm 2$	2.25 or
M1: Using ±2.75 A1: Correc M1: Using	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t	$\pm 0.75 \text{ or } \pm 2$	2.25 or
 M1: Using ±2.75 A1: Correc M1: Using M1: Substi 	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a)	± 0.75 or ±2	2.25 or
 M1: Using ±2.75 A1: Correct M1: Using M1: Substitication A1: Correct M1: Solve 	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan a or cot a) a 3 term quadratic, either by factorisation or formula (or by calculator (implied		
M1: Using ±2.75 A1: Correc M1: Using M1: Substi A1: Correc M1: Solve correct) and	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan a or cot a) a 3 term quadratic, either by factorisation or formula (or by calculator (implied d find a		
M1: Using ± 2.75 A1: Correc M1: Using M1: Substi A1: Correc M1: Solve correct) and A1: $\partial = 14$ N.B. If answ	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan a or cot a) a 3 term quadratic, either by factorisation or formula (or by calculator (implied	l) if answer i	S
M1: Using ± 2.75 A1: Correc M1: Using M1: Substi A1: Correc M1: Solve correct) and A1: $\partial = 1^4$ N.B. If answ solve must b	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan a or cot a) a 3 term quadratic, either by factorisation or formula (or by calculator (implied d find a 4° or better (No restriction on accuracy since g's cancel) ver is correct, previous M mark can be implied, but if answer is incorrect, an ex- be seen to earn the previous M mark.	l) if answer i	S
M1: Using ± 2.75 A1: Correc M1: Using M1: Substi A1: Correc M1: Solve correct) and A1: $\partial = 14$ N.B. If answ solve must b (b) ALTER	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan a or cot a) a 3 term quadratic, either by factorisation or formula (or by calculator (implied d find a 4° or better (No restriction on accuracy since g's cancel) ver is correct, previous M mark can be implied, but if answer is incorrect, an ex- be seen to earn the previous M mark.	l) if answer i	S
M1: Using ± 2.75 A1: Correct M1: Using M1: Substite A1: Correct M1: Solve correct) and A1: $\partial = 14$ N.B. If answer solve must be (b) ALTER M1: Using the M1: Using the M1	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan a or cot a) a 3 term quadratic, either by factorisation or formula (or by calculator (implied d find a 4° or better (No restriction on accuracy since g's cancel) wer is correct, previous M mark can be implied, but if answer is incorrect, an ex- be seen to earn the previous M mark. NATIVE the model with the usual rules applying to the equation	l) if answer i	S
M1: Using ± 2.75 A1: Correc M1: Using M1: Substi A1: Correc M1: Solve correct) and A1: $\partial = 14$ N.B. If answ solve must b (b) ALTER M1: Using to A1: Correc	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan a or cot a) a 3 term quadratic, either by factorisation or formula (or by calculator (implied d find a 4° or better (No restriction on accuracy since g's cancel) wer is correct, previous M mark can be implied, but if answer is incorrect, an ex- be seen to earn the previous M mark. NATIVE the model with the usual rules applying to the equation	l) if answer i	S
M1: Using ± 2.75 A1: Correct M1: Using M1: Substite A1: Correct M1: Solve correct) and A1: $\partial = 1^4$ N.B. If answer solve must be (b) ALTER M1: Using the A1: Correct M1: Using the A1: Correct	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan a or cot a) a 3 term quadratic, either by factorisation or formula (or by calculator (implied d find a 4° or better (No restriction on accuracy since g's cancel) ver is correct, previous M mark can be implied, but if answer is incorrect, an ex- be seen to earn the previous M mark. NATIVE the model with the usual rules applying to the equation et equation the model to obtain the total time from A to T t total time t	l) if answer i	S
M1: Using ± 2.75 A1: Correc M1: Using M1: Substi A1: Correc M1: Solve correct) and A1: $\partial = 14$ N.B. If answ solve must b (b) ALTER M1: Using the A1: Correc M1: Using A1: Correc M1: Substi	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan a or cot a) a 3 term quadratic, either by factorisation or formula (or by calculator (implied d find a 4° or better (No restriction on accuracy since g's cancel) ver is correct, previous M mark can be implied, but if answer is incorrect, an ex- be seen to earn the previous M mark. NATIVE the model with the usual rules applying to the equation et equation the model to obtain the total time from A to T t total time t tute for t in $20 = Ut \cos a$	l) if answer i	S
M1: Using ± 2.75 A1: Correct M1: Using M1: Substite A1: Correct M1: Solve correct) and A1: $\partial = 14$ N.B. If answer solve must be (b) ALTER M1: Using the A1: Correct M1: Using the A1: Correct M1: Substite M1: Substite M1	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan <i>a</i> or cot <i>a</i>) a 3 term quadratic, either by factorisation or formula (or by calculator (implied d find <i>a</i> 4° or better (No restriction on accuracy since g's cancel) ver is correct, previous M mark can be implied, but if answer is incorrect, an ex- be seen to earn the previous M mark. NATIVE the model with the usual rules applying to the equation et equation the model to obtain the total time from A to T t total time t tute for t in $20 = Ut \cos a$, using part (a)	l) if answer i	S
M1: Using ± 2.75 A1: Correct M1: Using M1: Substite A1: Correct M1: Solve correct) and A1: $\partial = 1^4$ N.B. If answer solve must be (b) ALTER M1: Using the A1: Correct M1: Using the A1: Correct M1: Substite M1: Substite A1: Correct	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan a or cot a) a 3 term quadratic, either by factorisation or formula (or by calculator (implied d find a 4° or better (No restriction on accuracy since g's cancel) ver is correct, previous M mark can be implied, but if answer is incorrect, an ex- ne seen to earn the previous M mark. NATIVE the model with the usual rules applying to the equation et equation the model to obtain the total time from A to T t total time t tute for t in $20 = Ut \cos a$, using part (a) et equation in tan a only	l) if answer i	S
M1: Using ± 2.75 A1: Correct M1: Using M1: Substite A1: Correct M1: Solve correct) and A1: $\partial = 1^4$ N.B. If answer solve must be (b) ALTER M1: Using the A1: Correct M1: Using the A1: Correct M1: Substite M1: Substite A1: Correct	et equation vertical motion . N.B. M0 if they use $s = \pm 2$ or ± 3 , but allow $s = \pm 1.25$ or t equation $20 = Ut \cos a$ to sub. for t tuting for U^2 using (a) et quadratic equation (in tan <i>a</i> or cot <i>a</i>) a 3 term quadratic, either by factorisation or formula (or by calculator (implied d find <i>a</i> 4° or better (No restriction on accuracy since g's cancel) ver is correct, previous M mark can be implied, but if answer is incorrect, an ex- be seen to earn the previous M mark. NATIVE the model with the usual rules applying to the equation et equation the model to obtain the total time from A to T t total time t tute for t in $20 = Ut \cos a$, using part (a)	l) if answer i	S

N.B. If they quote the equation of the trajectory $y = x \tan \alpha - \frac{gx^2}{2U^2 \cos^2 \alpha}$ or **AND** put in values for x

and *y*, could score first 5 marks, M1A1M1A1M1 (nothing for the equation only); wrong *x* value loses first A mark and wrong *y* value loses second A mark

(c)

B1: Give one limitation of the model e.g. the ball will have dimensions, or there will be air resistance or wind effects or spin

N.B. B0 if any incorrect extra(s) but ignore extra consequences.

(**d**)

M1: Using their \mathcal{A} to find a value for U

A1: Treat as M1: Using their U to find a value for t

B1: Treat as A1 : t = 1.1 or 1.10 (since depends on g = 9.8)

(d) ALTERNATIVE

M1: Using their ∂ to find a value for U

A1: Treat as M1: Using their U to find a value for t

B1: Treat as A1 : t = 1.1 or 1.10 (since depends on g = 9.8)

www.yesterdaysmathsexam.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom