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  Modelling a tube

Products such as toothpaste and hand cream are often sold in tubes which have a circular 
cross-section at the end which has the opening for the product to be dispensed. The other end of 
the tube is closed and is a straight line. The front view and side view of such a tube are shown in 
Fig. C1. The circular end will be defined to be the bottom end of the tube and the straight line end 
will be defined to be the top end.

Front view Side view

 Fig. C1

There is no simple formula for the volume of a tube of this shape, but a good approximation can be 
derived using mathematical modelling.

The cross-section at the bottom of the tube is a circle; the cross-section at the top is a straight line. 
Observation of tubes suggests that they are made by starting with a cylinder and closing one end by 
bringing the sides together in a straight line. This means that the tube will have a volume smaller 
than the cylinder that was used when making it. If the base radius of the tube is r, the height is h 
and the volume is V then

V r h21 r .

Modelling assumptions

The following table lists the modelling assumptions which will be made, together with some 
comments justifying each of them.

Modelling assumption Comments

The perimeter of the cross-section of the 
tube is constant all the way up.

This follows from starting with a cylinder to 
make the tube.

The nozzle at the bottom of the tube and the 
cap will be ignored.

Experience suggests that the nozzle and cap are 
not filled with the product when the tube is first 
opened so their volumes are not relevant.

The front width of the tube increases at a 
constant rate from the bottom end to the top 
end.

Observation suggests that this is a good 
approximation.

The side width of the tube decreases at a 
constant rate from the bottom end to the top 
end.

This situation is shown in Fig. C2; observation 
suggests that this is a close approximation for 
tubes of typical sizes.
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Modelling the cross-section
 

y

x
O r

h
Taking the y-axis as the axis of symmetry of the tube and 
looking at the tube from the side, as shown in Fig. C2, 
means that the side width of the tube is 2x at height y. 

When ,y x r0= =  and when ,y h x 0= = .

Assuming that the relationship between x and y is linear 
means that the side width decreases at a constant rate as y 
increases; this leads to ry hx hr+ = .

The cross-section at the bottom of the tube is a circle, as 
shown in Fig. C3.1; at the top of the tube, the cross-section 
is a line, as shown in Fig. C3.3. 
 Fig. C2
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2x rr

 Fig. C3.1 Fig. C3.2 Fig. C3.3

The exact ‘oval’ shape of the cross-section at intermediate points is not easy to determine, so a 
simple approximation for the shape is used.

When the width of the tube is 2x, the cross-section will be modelled as a rectangle with semicircular 
ends, as shown in Fig. C3.2. The radius of the semicircular ends is x. To ensure that the total 
perimeter of the cross-section is a constant, the length, l, of the rectangular part of the cross-section 
is given by ( )l r xr= - . It can be shown that this ensures that the front width of the tube increases 
at a constant rate as y increases, as required by the modelling assumptions.

Calculating the volume

Finding the area of the cross-section shown in Fig. C3.2 and using ry hx hr+ =  gives the 

cross-sectional area in terms of y as ( )
h
r h y2

2
2 2r
- . 

Imagine slicing the tube into thin horizontal slices, with cross-section as shown in Fig. C3.2 and 

thickness dy. The volume of the tube is given by ( ) ;
h

h y yr
h

2

2
2 2

0

r
d-/   since r and h are constants 

for the tube, this can be written as ( )
h
r h y y

h

2

2
2 2

0

r
d-/ .

Taking the limit as y 0"d  and evaluating the resulting integral gives V r h3
2 2r= . This is less than 

the volume of the cylinder, ,r h2r  as expected.
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