

Mark Scheme (Results)

January 2016

Pearson Edexcel International A Level in Statistics 1 (WST01)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043346
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M)
 marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol√ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams

- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct please send to review.

Jan2016 WST01 STATISTICS 1 International Mark Scheme

Mark Scheme		
Question Number	Scheme	Marks
1.(a)	$[F(5) =] \frac{5}{\underline{6}}$	B1
		(1)
(b)	$E[X] = \frac{1}{4} - 2 \times \frac{1}{4} + 1 \times \frac{1}{6} + 3 \times \frac{1}{3} + 4 \times \frac{1}{12} + 6 \times \frac{1}{6} \text{or} \frac{1}{12} \left(-6 + 2 + 12 + 4 + 12 \right)$	M1
	= <u>2</u>	A1
	1 1 1 1	(2)
(c)	$\left[E(X^{2}) = \right] \left(-2 \right)^{2} \times \frac{1}{4} + 1 \times \frac{1}{6} + 3^{2} \times \frac{1}{3} + 4^{2} \times \frac{1}{12} + 6^{2} \times \frac{1}{6} \text{(o.e.)}$	
	1 (12 2 26 16 72) 138 23	M1
	$\frac{1}{12} \left(12 + 2 + 36 + 16 + 72\right) \underline{\text{or}} \frac{138}{12} \underline{\text{or}} \frac{23}{2} \text{(o.e.)}$	
	$[Var(X) =] "\frac{23}{2}" - "2"^2$	M1
	= <u>7.5</u> (o.e.)	A1
(d)(i)	[E(Y) = 7 - 2E(X) =] 3	(3) B1
(ii)	$[Var(Y) =] (-2)^2 Var(X) \underline{or} 4 Var(X)$	M1
(11)	= 30	A1
(iii)	$7-2X>X \Rightarrow 7>3X$	M1
	so $X = 1$ or -2	A1
	So $[P(Y > X) =] \frac{5}{12}$	A1 (6)
	Notes	
(a)	B1 for $\frac{5}{6}$ or exact equivalents e.g. $\frac{10}{12}$ or 0.83	
	For M1 in (b) & 1 st M1 in (c) take <u>full</u> method leading to answer: e.g. ÷ by 5 (or	
(b)	M1 for an attempt at $E(X)$ with at least 3 correct products seen. Answer of	nly M1A1
(c)	1^{st} M1 for an attempt at E(X^2) with at least 3 correct products seen (even if 1	abelled $Var(X)$)
	Condone -2^2 if it later becomes $+4$ but only 3 correct products are no	eeded for M1
	2^{nd} M1 for a correct numerical expression for $Var(X)$ ft their $E(X)$ and their E	(X^2)
	A1 for 7.5 or any exact equivalent e.g. $\frac{15}{2}$ Answer only M1M1A1	
(d)(i)	B1 for 3 only	
(ii)	M1 for correct use of $Var(aX+b)$ formula. ft their value of $Var(X)$ even	if < 0
(iii)	A1 for 30 only M1 for attempt at solving a correct inequality as far as $a > bx$ (a and b be	oth >0)
(111)	1st A1 for identifying $X = 1$ and -2 as the required values (or $Y = 11$ and 5)	
	2^{nd} A1 for $\frac{5}{12}$ or an exact equivalent	_ ,
ALT	[$y: 11\ 5\ 1\ -1\ -5$] Allow M1 in (ii) for attempt at $E(Y^2) = 39\ (\ge 3\ corr$	rect products)
ALI	and $Var(Y) = "39" - "3"^2$ ft their $E(Y)$	
	Allow M1 in (iii) for attempt at full set of Y values with corresponding X probs (≥ 3 c	correct)

Question Number	Scl	neme	Marks
Question Number	Scl	neme	Marks
2.(a)	[pass for] <u>30</u>	(labelled or 1 st answer)	B1 (1)
(b)	[merit for] 46	(labelled or 2 nd answer)	B1 (1)
(c)	$[1.5(Q_3 - Q_1) = 1.5 \times 16 = 24]$ so $c =$	70 and $d = 6$	B1, B1
(d)	<u>68, 72, 79</u>		B2/1/0 (2)
(e)	5 < d therefore 5 is an outlier		M1 (2)
	* I 30 30 4	1 3 3	A1 A1
	Y I I I I I I I I I I I I I I I I I I I		
(f)	$\frac{1}{2} \times \left(\frac{1}{4}\right)^2 \times 3$ $= \frac{3}{32}$		(3) M1M1
	$=\frac{3}{32}$		A1
			(3) [12 marks]
	N	otes	[
(c) SC	$1^{\text{st}} B1$ for $c = 70$ $2^{\text{nd}} B1$ for $d = 1$	one correct numbers with % e.g. 30% = 6 (Allow B1B1 for unlabelled 70 follow $d = 70$ or 6 and 70 in the wrong order	
(d)	B2 for all 3 correct values (and r	no extra value) (B1 for two correct)	
(e)	M1 for identifying or stating(e.g. ending at 6 or 10 (May be im 1st A1 for only one outlier correctly 2nd A1 for a single lower whisker sto Condone 15 marked (e.g. das	marked at 5 (whisker(s) must stop above	<u>e</u> 5)
(f)	1 st M1 for $\frac{1}{2} \times \left(\frac{1}{4}\right)^2$		
SC	NB $\frac{3}{4} \times \left(\frac{1}{4}\right)^2 \times 3 = \frac{9}{64} = 0.14062$ Can award M0M1A0 if <u>just</u>	$pq^2 \times 3$ where p and q are probabilities 25 is a common incorrect answer and second (o.e.) is seen. llow 0.0937 or 0.0938 following a correct	ores M0M1A0
Warning	$2 \times (0.25)^2 \times (0.75)$ or $2 \times (\frac{1}{4})^2$	$\times \frac{3}{4}$ gives the correct answer but is M0M	0A0

Question Number	Scheme	Marks
3.(a)	$[S_{vs}] = 177.311 - \frac{36.8 \times 29}{8} = 43.911 = \text{awrt } \underline{43.9}$	A1
	$[S_{vs}] = 177.311 - \frac{36.8 \times 29}{8} = 43.911 = $ awrt $\underline{43.9}$ $[S_{ss}] = 209.72 - \frac{36.8^2}{8} = 40.44 = $ awrt $\underline{40.4}$	M1 A1
	"43 011"	(3)
(b)	$r = \frac{\text{"43.911"}}{\sqrt{55.275 \times \text{"40.44"}}} \;, = 0.92875 = \text{awrt } \underline{\textbf{0.929}}$	M1, A1
(c)	r is close to 1 so there is support for the publisher's belief [if $1 > r/ \dots 0.5$] (Allow "yes" because "strong corr." <u>but</u> "yes" & "positive corr." is B0)	B1ft (2)
(d)	$b = \frac{\text{"43.911"}}{55.275}, = 0.7944 = \text{awrt } 0.79$	(1) M1, A1
	$a = \overline{s} - b\overline{v} = 4.6 - 0.7944 \times 3.625 = 1.720$ $\underline{s = 1.72 + 0.794v}$	M1 A1 (4)
(e)	$\frac{y}{1000}$ = "1.72"+ "0.794"× $\left(\frac{x+50}{200}\right)$	M1
	y = 1920 + 3.97x	A1 A1ft (3)
(f)	Gradient of textbooks is greater spend more advertising on textbooks	B1ft dB1ft (2)
	Notes	[15 marks]
(a)	M1 for one correct expression For correct answer with $n = 1^{st} A1$ for $[S_{\nu s} =]$ awrt 43.9 award M1 and the appropriate $[S_{n s} =]$ awrt 40.4 Condone missing labels	_
(b)	M1 for a correct expr' for r, ft their 43.911 (but not 177.311) and their 40.44 A1 for awrt 0.929 (correct ans only scores 2/2 and ans only of 0.93 scores M	*
(c)	B1ft for saying it <u>does</u> support the belief <u>or</u> a linear model/relationship is support and giving a suitable reason e.g. <u>strong</u> correlation [If $ r < 0.5$ allow " r close to 0" so "does <u>not</u> support" o.e.]	itable
(d)	In (d) and (e) a correct answer with no working is awarded the M marks by implication 1^{st} M1 for a correct expression for b , ft their 43.911 and allow 3sf values to be used 1^{st} A1 for awrt 0.79 or allow an exact fraction from the 3sf values e.g. $\frac{439}{553}$	
	2^{nd} M1 for a correct method for a , ft their value of b NB $\overline{s} = 4.6 = \frac{3.6}{8}$ and 2^{nd} A1 for equation for s in terms of v with $a = \text{awrt } 1.72$ and $b = \text{awrt } 0.794$	· ·
(e)	M1 for correct sub. in their equation giving an equation in y and x . Allow 1^{st} A1 for $c = 1920$ (to 3 sf)	$\sqrt{1}$ slip e.g. $\frac{y}{100}$
ALT	2^{nd} A1ft for $d = \text{awrt } 3.97$ or $5 \times (\text{their } b \text{ correct to } 2 \text{ sig. figs.})$ Using coding formulae to get values for x , y requires a <u>full</u> method. Allow 1 slip but of	correct $d \Rightarrow M1$
(f)	1 st B1ft for a suitable reason based on gradients (o.e. in words e.g. rate of in	icrease)
ft	2^{nd} dB1ft for recommending spend more on advertising textbooks If gradient in (e) < 1.2 then a <u>comparison of grads</u> leading to spending on no	ovels is B1B1

Question Number	Scheme	Marks
4.(a)	0.7 Pass O.3 Fail O.5 Pass O.7 Fail O.9 Fail	B1 B1
(b)	$1 - 0.3 \times 0.5 \times 0.7 \times 0.9 \underline{\text{or}} 0.7 + (0.3 \times 0.5) + (0.3 \times 0.5 \times 0.3) + (0.3 \times 0.5 \times 0.7 \times 0.1)$ $= \underline{0.9055}$	(2) M1 A1
(c)	$[P(P_1 \cup P_2 \mid Pass) =] \frac{0.7 + "0.3" \times 0.5}{(b)}, = \frac{0.85}{"0.9055"}$ $= 0.938707 = awrt 0.939$	(2) M1, A1ft
(d)		A1 (3) M1 dM1A1cso
(e)	$p = \frac{2.2 \pm \sqrt{2.2^2 - 4 \times 1.15}}{2}$ or Complete the sq: $(p-1.1)^2 - 1.1^2 + 1.15 = 0$ 2.2 ± 0.4898 $2.2 \pm \sqrt{0.24}$	(3) M1
	$= \frac{2.2 \pm 0.4898}{2} \text{ or } \frac{2.2 \pm \sqrt{0.24}}{2} \text{ or } 1.1 \pm \sqrt{0.06} \text{ or } (1.34), 0.855$ $p = 0.85505102 p = 0.855$	A1 A1
	Notes	(3)
(a)	1 st B1 for correctly placing 0.3 and 0.5 2 nd B1 for correctly placing 0.7, 0.1 and 0.9	
(b)	Apart from (d), a correct answer with no incorrect working scores full marks. M1 for a correct expression (ft from their tree diagram) A1 for 0.9055 or exact equivalent e.g. $\frac{1811}{2000}$ Accept 0.906 only if correct expr' seen	
(c)	M1 for a correct ratio of probs ft their 0.3 and their answer to (b)[if < 1]. Num > Den M0 A1ft for correct numerator and their part (b) on denominator for awrt 0.939 or accept exact fraction eg $\frac{1700}{1811}$	
(d)	1 st M1 for a correct expression for P(pass) in terms of p[condone p-(p-12 nd dM1 dep. on 1 st M1 for expanding brackets and forming an equation in p Allow one slip A1cso correct processing leading to printed answer. No incorrect working	
(e)	M1 for attempt to solve given equation, correct expression. Condone just 1^{st} A1 for correct expression and simplified square root or 1.34 and 0.855 2^{nd} A1 for $p = 0.855$ only (penalise any extra value > 1) Correct ans only so	
Ans. only	For $\frac{1}{10}(11-\sqrt{6})$ or 0.855 score M1A1A0 (not to 3dp) but for 0.855 can see	

Question Number	Scheme	Marks
5.(a)	$[P(H < 18) =] P(Z < \frac{18 - 22}{10}) = P(Z < -0.4)$	M1
	$= 1 - 0.6554$ $= 0.3446 \text{ or awrt } \underline{0.345}$	dM1 A1 (3)
(b)	P(H > 50) = P(Z > 2.8) = 1 - 0.9974 = 0.0026 P(H > 39) = P(Z > 1.7) = 1 - 0.9554 = 0.0446 P(H > 50) "0.0026"	M1 A1 A1
	$P(H > 50 \mid H > 39) = \frac{P(H > 50)}{P(H > 39)} \underline{\text{or}} \frac{"0.0026"}{"0.0446"}$	M1
	$= 0.057 \sim 0.0585$	A1 (5)
(c)	$\frac{18 - \mu}{\sigma} = -0.8416$ $\frac{28 - \mu}{\sigma} = 1$ Solving: $10 = 1.8416 \sigma$	M1B1A1
	Solving: $10 = 1.8416\sigma$	M1
	σ = awrt 5.43	A1
	μ = awrt $\frac{22.57}{}$	A1
		(6) [14 marks]
	Notes	[14 marks]
(a)	1 st M1 for standardising with 18, 22 and 10. Allow $\pm \frac{18-22}{10}$	
	2 nd dM1 dependent on 1 st M1 for $1-p$ where $0.6A1 for 0.3446 or better or awrt 0.345. NB Calculator gives 0.3445783.$	Ans only 3/3
(b)	1 st M1 for correct standardisation and $1-q$ (where $q=0.9$) for one of thes 1 st A1 for 0.0026 or better (calc 0.0025551) or $1-0.9974$ (or better) 2 nd A1 for 0.0446 or better (calc 0.0445654) or $1-0.9554$ (or better) 2 nd M1 for a correct ratio of probability expressions or values (ft their 0.0026 and 0.0446 but if num. > denom. then M0) 3 rd A1 for answer in the range 0.057~0.0585. No fractions but $\frac{13}{223}$ can score M	
Ans. only	Can score full marks for either awrt 0.0583 (tables) or awrt 0.0573 (c	
(c)	1st M1 for attempt to standardise with μ , σ and 18 or 28 and set equal to a z v. The z values should be in the range (0.8, 0.9) for "18" and (0.95, 1.05) for using $z = 0.8416$ or better (allow \pm) Calculator gives 0.8416212 1st A1 for both equations with \pm 1 and \pm 0.84 or better	5) for "28"
SC	for $\frac{28-\mu}{\sigma} = \pm 0.8416$ and $\frac{18-\mu}{\sigma} = \pm 1$ award M1B1A0 (0.84 instead of 0.	8416 loses B1)
	2^{nd} M1 for solving their linear equations in μ & σ . Reducing to an equation in Correct processes allow one sign slip 2^{nd} A1 for σ = awrt 5.43 3^{rd} A1 for μ = awrt 22.57	
Calc	No z = 0.8416 or better seen: can award 6/6 for σ = awrt 5.4300 or 5.4301 and μ	= awrt 22.57
No working	For σ = awrt 5.43 and μ = awrt 22.57 award M1B0A1M1A1A1 i.e. 5/6	

Question Number	Scheme	Marks
6.(a)	$(\mu \text{ or } \overline{x} =) \frac{8360}{10} = 836$	B1
	$(\mu \text{ or } \overline{x} =) \frac{8360}{10} = \underline{836}$ $(\sigma =) \sqrt{\frac{\sum (x - \overline{x})^2}{10}} = \sqrt{6384} \text{ or } 4\sqrt{399}, = 79.89993 \text{ awrt } \underline{79.9}$	M1, A1
(b)	mean > median So <u>positive</u> (skew)	(3) B1 dB1 (2)
(c)	$\frac{776+896}{2}$ = 836 which is the same as \bar{x} or one is 60 above \bar{x} , one 60 below	B1
	So <u>no change</u> in the mean	dB1 (2)
(d)	$(896-836)^2 = (776-836)^2 = 60^2 = 3600 < 6384$ the average of $\sum (x-\overline{x})^2$	B1
	$\underline{\text{Or}} \sum (x - \overline{x})^2 \rightarrow 63840 + 2 \times 60^2 = 71040 \text{ and } \frac{71040}{12} = 5920 < \frac{63840}{10}$	
	So standard deviation will <u>reduce</u>	dB1
		(2) [9 marks]
	Notes	
(a)	M1 for $\frac{63840}{10}$ with or without $\sqrt{\ }$ (ignore labels) or $s^2 = \frac{63840}{9}$ NB $\sum x^2 = 7052800$ but must see at least $\sigma^2 = \frac{7052800}{10} - ("836")^2$ for N	4 1
	A1 for awrt 79.9 Accept $s = \text{awrt } 84.2 \ (84.2219)$. Correct answer only M	
(b)	1^{st} B1 for a correct comparison of mean and median (allow just $836 > 815$)	
	May see $\frac{k(\text{mean} - \text{median})}{\sigma \text{ or } \sigma^2}$ (o.e.) if so just check sign of answer (provide	ed denom > 0)
SC	2^{nd} dB1 dependent on 1^{st} B1 for positive (skew) only. Positive correlation is If their mean is < 815 award B0B1 for the comparison <u>and</u> statement of new terms of the statement of th	s B0
(c)	1 st B1 for a suitable calculation to show(or statement) that mean of these t	,
	all 12) is the same e.g. new $\sum x = 8360 + 776 + 896 = 10032$, so mean =	$=\frac{10032}{12}=836$
SC	2 nd dB1 dependent on a suitable calculation or reason for stating "no change If they only say differences are the same (but not 1 above and 1 below no change then award B0B1	
(d)	1 st B1 for a suitable calculation showing 60 or 3600 and comparing with 79 respectively (must see some calculation here) or calculation of new variance (5920 vs 6384) or st. dev (76.9 vs 79.9)	
IInc -PN 2	2 nd dB1 dependent on 1 st B1 for stating s.d. "reduces" (o.e.)	
Use of Σx^2	Send arguments based on Σx^2 to review	

www.yesterdaysmathsexam.com