Question	Scheme	Marks	AOs
9	$a = \left(\frac{3}{4}\right)^2 \text{ or } a = \frac{9}{16}$ or $r = -\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \frac{\frac{9}{16}}{1 - \left(-\frac{3}{4}\right)} = \dots$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
		(3)	
	Alternative 1:		
	$\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \frac{-\frac{3}{4}}{1 - \left(-\frac{3}{4}\right)} = \dots \text{ or } r = -\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = -\frac{3}{7} - \left(-\frac{3}{4}\right)$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
	Alternative 2:		
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = \left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^3 + \left(\frac{3}{4}\right)^4 - \dots$	B1	2.2a
	$= \left(\frac{3}{4}\right)^{2} + \left(\frac{3}{4}\right)^{4} + \dots - \left(\frac{3}{4}\right)^{3} - \left(\frac{3}{4}\right)^{5} - \dots$ $\left(\frac{3}{4}\right)^{2} + \left(\frac{3}{4}\right)^{4} + \dots = \left(\frac{3}{4}\right)^{2} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right) \text{ or } - \left(\frac{3}{4}\right)^{3} - \left(\frac{3}{4}\right)^{5} - \dots = -\left(\frac{3}{4}\right)^{3} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right)$ $\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^{n} \cos\left(180n\right)^{\circ} = \left(\frac{3}{4}\right)^{2} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right) - \left(\frac{3}{4}\right)^{3} \left(\frac{1}{1 - \left(\frac{3}{4}\right)^{2}}\right)$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
	Alternative 3:		
	$\sum_{n=2}^{\infty} \left(\frac{3}{4}\right)^n \cos(180n)^\circ = S = \left(\frac{3}{4}\right)^2 - \left(\frac{3}{4}\right)^3 + \left(\frac{3}{4}\right)^4 - \dots$	B1	2.2a
	$= \left(\frac{3}{4}\right)^2 \left(1 - \left(\frac{3}{4}\right) + \left(\frac{3}{4}\right)^2 - \dots\right) = \left(\frac{3}{4}\right)^2 \left(\frac{1}{4} + S\right) \Longrightarrow \frac{7}{16}S = \frac{9}{64} \Longrightarrow S = \dots$	M1	3.1a
	$=\frac{9}{28}*$	A1*	1.1b
		(3	marks)
	Notes		

Question	Scheme	Marks	AOs
1(a)	$16 + (21 - 1) \times d = 24 \Longrightarrow d = \dots$	M1	1.1b
	d = 0.4	A1	1.1b
	Answer only scores both marks.		
		(2)	
(b)	$S_n = \frac{1}{2}n\{2a + (n-1)d\} \Longrightarrow S_{500} = \frac{1}{2} \times 500\{2 \times 16 + 499 \times "0.4"\}$	M1	1.1b
	= 57900	A1	1.1b
	Answer only scores both marks		
		(2)	
	(b) Alternative using $S_n = \frac{1}{2}n\{a+l\}$		
	$l = 16 + (500 - 1) \times "0.4" = 215.6 \Longrightarrow S_{500} = \frac{1}{2} \times 500 \{16 + "215.6"\}$	M1	1.1b
	= 57 900	A1	1.1b
		(4	marks)
	Notes		
n = 2 If the A1: Correct (b) M1: Atten part (If a for A1: Correct Alternativ	ormula is quoted it must be correct (it is in the formula book) et value ve:	scores M	10
M1: Corre	ct method for the 500 th term and then uses $S_n = \frac{1}{2}n\{a+l\}$ with their l		
A1: Corre	ct value		
Note th	at some candidates are showing implied use of $u_n = a + nd$ by showing	the follov	ving:
	(a) $d = \frac{24-16}{21} = \frac{8}{21}$ (b) $S_{500} = \frac{1}{2} \times 500 \left\{ 2 \times 16 + 499 \times \frac{8}{21} \right\} = 55523.809$ This scores (a) M0A0 (b) M1A0		

Question	Scheme	Marks	AOs
3(a)	$u_2 = k - 12, \ u_3 = k - \frac{24}{k - 12}$	M1	1.1b
	$u_1 + 2u_2 + u_3 = 0 \Longrightarrow 2 + 2(k - 12) + k - \frac{24}{k - 12} = 0$	dM1	1.1b
	$\Rightarrow 3k - 22 - \frac{24}{k - 12} = 0 \Rightarrow (3k - 22)(k - 12) - 24 = 0$ $\Rightarrow 3k^2 - 36k - 22k + 264 - 24 = 0$	A1*	2.1
	$\Rightarrow 3k^2 - 58k + 240 = 0*$	(3)	
(b)	$k = 6, \left(\frac{40}{3}\right)$	M1	1.1b
	k = 6 as k must be an integer	A1	2.3
		(2)	
(c)	$(u_3 =)10$	B1	2.2a
		(1)	
		(6	marks)
	Notes		

(a)

M1: Attempts to apply the sequence formula once for either u_2 or u_3 .

Usually for $u_2 = k - \frac{24}{2}$ o.e. but could be awarded for $u_3 = k - \frac{24}{their "u_2"}$

dM1: Award for

- attempting to apply the sequence formula to find both u_2 and u_3
- using $2+2"u_2"+"u_3"=0 \Rightarrow$ an equation in k. The u_3 may have been incorrectly adapted

A1*: Fully correct work leading to the printed answer. There must be

• (at least) one correct intermediate line between $2+2(k-12)+k-\frac{24}{k-12}=0$ (o.e.) and the

given answer that shows how the fractions are "removed". E.g. (3k-22)(k-12)-24=0

• no errors in the algebra. The = 0 may just appear at the answer line.

(b)

M1: Attempts to solve the quadratic which is implied by sight of k = 6.

- This may be awarded for any of
 - $3k^2 58k + 240 = (ak \pm c)(bk \pm d) = 0$ where ab = 3, cd = 240 followed by k =
 - an attempt at the correct quadratic formula (or completing the square)
 - a calculator solution giving at least k = 6
- A1: Chooses k = 6 and gives a minimal reason

Examples of a minimal reason are

- 6 because it is an integer
- 6 because it is a whole number
- 6 because $\frac{40}{3}$ or 13.3 is not an integer

(c)

B1: Deduces the correct value of u_3 .

Question	Scheme	Marks	AOs
4	(i) $\sum_{r=1}^{16} (3+5r+2^r) = 131798$; (ii) $u_1, u_2, u_3,, : u_{n+1} = \frac{1}{u_n}, u_1 = \frac{2}{3}$		
(i) Way 1	$\left\{\sum_{r=1}^{16} \left(3+5r+2^r\right) = \right\} \sum_{r=1}^{16} \left(3+5r\right) + \sum_{r=1}^{16} \left(2^r\right)$	M1	3.1a
	$=\frac{16}{2}(2(8)+15(5)) + \frac{2(2^{16}-1)}{2-1}$	M1 M1	1.1b 1.1b
	= 728 + 131070 = 131798 *	A1*	2.1
		(4)	
(i) Way 2	$\left\{\sum_{r=1}^{16} \left(3+5r+2^r\right) = \right\} \sum_{r=1}^{16} 3 + \sum_{r=1}^{16} \left(5r\right) + \sum_{r=1}^{16} \left(2^r\right)$	M1	3.1a
	$= (3 \times 16) + \frac{16}{2}(2(5) + 15(5)) + \frac{2(2^{16} - 1)}{2}$	M1	1.1b
	2 (2 (2)) 2 (2 (2)) 2 -1	M1	1.1b
	= 48 + 680 + 131070 = 131798 *	A1*	2.1
		(4)	
		M1	3.1a
(i)	Sum = 10 + 17 + 26 + 39 + 60 + 97 + 166 + 299 + 560 + 1077 + 2106	M1	1.1b
Way 3	+4159+8260+16457+32846+65619=131798 *	M1 A1*	1.1b 2.1
		(4)	2.1
(ii)	$\left\{u_1 = \frac{2}{3}\right\}, \ u_2 = \frac{3}{2}, \ u_3 = \frac{2}{3}, \dots$ (can be implied by later working)	M1	1.1b
	$\left\{\sum_{r=1}^{100} u_r = \right\} 50\left(\frac{2}{3}\right) + 50\left(\frac{3}{2}\right) \text{or} 50\left(\frac{2}{3} + \frac{3}{2}\right)$	M1	2.2a
	$=\frac{325}{3} \left(\text{or } 108\frac{1}{3} \text{ or } 108.3 \text{ or } \frac{1300}{12} \text{ or } \frac{650}{6} \right)$	A1	1.1b
		(3)	
		(7	marks)

Question	Scheme	Marks	AOs
8 (i) Way 1	$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^r = 20 \left(\frac{1}{2}\right)^4 + 20 \left(\frac{1}{2}\right)^5 + 20 \left(\frac{1}{2}\right)^6 + \dots$		
	$=\frac{20(\frac{1}{2})^4}{1-\frac{1}{2}}$	M1	1.1b
	2	M1	3.1a
	$\{=(1.25)(2)\}=2.5$ o.e.	Al	1.1b
		(3)	
(i) Way 2	$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^r = \sum_{r=1}^{\infty} 20 \times \left(\frac{1}{2}\right)^r - \sum_{r=1}^{3} 20 \times \left(\frac{1}{2}\right)^r$		
	10 (10 + 5 + 2.5) 10 $10(1-(\frac{1}{2})^3)$	M1	1.1b
	$= \frac{10}{1 - \frac{1}{2}} - (10 + 5 + 2.5) \text{or} = \frac{10}{1 - \frac{1}{2}} - \frac{10(1 - (\frac{1}{2})^3)}{1 - \frac{1}{2}}$	M1	3.1a
	$\{=20-17.5\}=2.5$ o.e.	A1	1.1b
		(3)	
(i) Way 3	$\sum_{r=4}^{\infty} 20 \times \left(\frac{1}{2}\right)^r = \sum_{r=0}^{\infty} 20 \times \left(\frac{1}{2}\right)^r - \sum_{r=0}^{3} 20 \times \left(\frac{1}{2}\right)^r$		
	20 (20 + 10 + 5 + 2.5) 20 $20(1-(\frac{1}{2})^4)$	M1	1.1b
	$= \frac{20}{1 - \frac{1}{2}} - (20 + 10 + 5 + 2.5) \text{ or } = \frac{20}{1 - \frac{1}{2}} - \frac{20(1 - (\frac{1}{2})^4)}{1 - \frac{1}{2}}$	M1	3.1a
	$\{=40-37.5\}=2.5$ o.e.	A1	1.1b
		(3)	
(ii) Way 1	$\left\{\sum_{n=1}^{48}\log_5\left(\frac{n+2}{n+1}\right)=\right\}$		
	$= \log_{5}\left(\frac{3}{2}\right) + \log_{5}\left(\frac{4}{3}\right) + \dots + \log_{5}\left(\frac{50}{49}\right) = \log_{5}\left(\frac{3}{2} \times \frac{4}{3} \times \dots \times \frac{50}{49}\right)$	M1	1.1b
	$= \log_5\left(\frac{-}{2}\right) + \log_5\left(\frac{-}{3}\right) + \dots + \log_5\left(\frac{-}{49}\right) = \log_5\left(\frac{-}{2} \times \frac{-}{3} \times \dots \times \frac{-}{49}\right)$	M1	3.1a
	$= \log_5\left(\frac{50}{2}\right)$ or $\log_5(25) = 2 *$	A1*	2.1
		(3)	
(ii) Way 2	$\left\{\sum_{n=1}^{48} \log_5\left(\frac{n+2}{n+1}\right) = \right\} \sum_{n=1}^{48} (\log_5(n+2) - \log_5(n+1))$	M1	1.1b
	$= (\log_5 3 + \log_5 4 + \dots + \log_5 50) - (\log_5 2 + \log_5 3 + \dots + \log_5 49)$	M1	3.1a
	$= \log_5 50 - \log_5 2$ or $\log_5 \left(\frac{50}{2}\right)$ or $\log_5(25) = 2*$	A1*	2.1
		(3)	
		(6 marks)

Question	Scheme	Marks	AOs
13 (a)	Uses the sequence formula $a_{n+1} = \frac{k(a_n + 2)}{a_n}$ once with $a_1 = 2$	M1	1.1b
	$(a_1 = 2), a_2 = 2k, a_3 = k + 1, a_4 = \frac{k(k+3)}{k+1}$ Finds four consecutive terms and sets a_4 equal to a_1 (oe)	M1	3.1a
	$\frac{k(k+3)}{k+1} = 2 \Longrightarrow k^2 + 3k = 2k+2 \Longrightarrow k^2 + k - 2 = 0 *$	A1*	2.1
		(3)	
(b)	States that when $k = 1$, all terms are the same and concludes that the sequence does not have a period of order 3	B1	2.3
		(1)	
(c)	Deduces the repeating terms are $a_{1/4} = 2$, $a_{2/5} = -4$, $a_{3/6} = -1$,	B1	2.2a
	$\sum_{n=1}^{80} a_k = 26 \times (2 + -4 + -1) + 2 + -4$	M1	3.1a
	= -80	A1	1.1b
		(3)	
I		('	7 marks)
Notes:			

Question	Scheme	Marks	AOs
15(a)	$S_n = a + ar + ar^2 + \dots + ar^{n-1}$	В1	1.2
	$rS_n = ar + ar^2 + ar^3 + \dots + ar^n \Longrightarrow S_n - rS_n = \dots$	M1	2.1
	$S_n - rS_n = a - ar^n$	A1	1.1b
	$S_n(1-r) = a(1-r^n) \Longrightarrow S_n = \frac{a(1-r^n)}{(1-r)}*$	A1*	2.1
		(4)	
(b)	$\frac{a(1-r^{10})}{1-r} = 4 \times \frac{a(1-r^5)}{1-r} \text{ or } 4 \times \frac{a(1-r^{10})}{1-r} = \frac{a(1-r^5)}{1-r}$ Equation in r^{10} and r^5 (and possibly $1-r$)	М1	3.1a
	$1 - r^{10} = 4(1 - r^5)$	A1	1.1b
	$r^{10} - 4r^{5} + 3 = 0 \Rightarrow (r^{5} - 1)(r^{5} - 3) = 0 \Rightarrow r^{5} = \dots$ or e.g. $1 - r^{10} = 4(1 - r^{5}) \Rightarrow (1 - r^{5})(1 + r^{5}) = 4(1 - r^{5}) \Rightarrow r^{5} = \dots$	dM1	2.1
	$r = \sqrt[3]{3}$ oe only	A1	1.1b
		(4)	
	·		(8 marks)

Question Number	Scheme	Marks
5.		
(a)	$u_2 = 2 - \frac{4}{3} = \frac{2}{3}, \ u_3 = 2 - \frac{4}{\frac{2}{3}} = -4, \ u_4 = 2 - \frac{4}{-4} = 3$	M1 A1 A1
(b)	$u_{61} = 3$.	[3] B1
(c)	$\sum_{n=1}^{99} u = (3 + \frac{2}{2} - 4) + (3 + $	[1] M1
	$\sum_{i=1}^{99} u_i = (3 + \frac{2}{3} - 4) + (3 + \frac{2}{3} - 4) + (3 + \frac{2}{3} - 4) + \dots$ $\sum_{i=1}^{99} u_i = 33 \times (\dots + \dots + \dots) , = -11$	
	$\sum_{i=1}^{n} u_i = 33 \times (\dots + \dots + \dots) , = -11$	A1, A1 [3]
(c)	Alternative method for part (c) Adds $n \times "3" + n \times "-4" + n \times "\frac{2}{3}"$	M1
	Uses <i>n</i> = 33 -11	A1 A1 [3]
		7 marks
	Notes	
(a)	M1: Attempt to use formula correctly (implied by first term correct, or given as 0.67, or third term through from their second etc) A1: two correct answers	n following
	A1: 3 correct answers (allow 0.6 recurring but not 0.667)	
(b)	Look for the values. Ignore the u_r label	
(c)	B1: cao (NB Use of AP is B0)	
	M1: Uses sum of at least 3 terms found from part (a)) (may be implied by correct answer). Attem AP here is M0.	pt to sum an
	A1: obtains $33 \times (\text{sum of three adjacent terms})$ or $11 \times (\text{sum of nine adjacent terms})$	
	A1: - 11 cao (-11 implies both A marks) N.B. Use of $n = 99$ is M1A0A0	

Question Number	Scheme	Marks
11. (a)	Uses $(2p-6) - 4p = 4p - 60$ or $4p = \frac{60 + (2p-6)}{2}$ or $60 + 2(4p-60) = 2p-6$ or etc or two correct equations with <i>d</i> So $p = 9$ *	M1 A1 *
Alternative to (a) (b)	Use $p=9$ to give 60, 36 and 12 and deduce $d = -24$ so conclude AP when $p = 9$ Uses $a + 19d$ with $a = 60$ Finds $d = 36 - 60 = -24$ So obtains -396	[2] M1 A1 [2] M1 B1 A1 [3]
(c)	Uses $\frac{n}{2}(2 \times 60 + (n-1)d)$ Uses $\frac{n}{2}(2 \times 60 - 24(n-1))$	M1 A1
	= 12n (6-n) *	A1* [3] 8 marks
	Notes	
(a)	M1: Correct equation to enable p to be found or two correct equations if d introduced and solvi simultaneous equations to eliminate d and enable p to be found NB May add three terms and use sum formula giving e.g. $60 + 4p + 2p - 6 = \frac{3}{2}(60 + 2p - 6)$	ing
(b)	A1: cso (Do not need intermediate step) M1: Correct formula with their value for d B1: $d = -24$ seen in (a) or (b) A1: -396 If all terms are found and added $60 + 36 + 12 + -12 +$	
(c)	Need 20 terms for M1, need -24 implied by first 4 terms for B1 and correct answer for A1 M1:Uses correct formula with their value for d A1: Correct value for d A1: given answer – must be no errors to award this mark Special case: Proves formula for sum of AP M1: Correct method of proof using their d A1: For $d = -24$ A1: given answer – must be no errors to award this mark	

Question Number	Scheme	Marks
9(i)	$\sum_{r=1}^{20} (3+5r) = 8+13+18+\dots+103$	M1
	Use of $S_n = \frac{n}{2} (2a + (n-1)d)$ or $S_n = \frac{n}{2} (a+l)$ with a=3 or 8, n=19 or 20, d=5 and l=103	M1
	$S_{20} = \frac{20}{2} (8 + 103) = 1110$	A1
(ii)	$\sum_{r=0}^{\infty} \frac{a}{4^r} = 16 \Longrightarrow \frac{a}{1} + \frac{a}{4} + \frac{a}{16} \dots = 16 \qquad r = \frac{1}{4} \text{ oe}$	(3) B1
	Use of $S_{\infty} = \frac{a}{1-r}$ with $0 < r < 1$ and $S_{\infty} = 16$	M1
	$16 = \frac{a}{1 - r'} \Longrightarrow a =$	dM1
	a = 12	A1 (4)
		(7 marks)

Question Number	Scheme	Marks
5. (a)	$S_n = a$ + $(a+d)$ + $(a+2d)$ + + $(a+(n-1)d)$	M1
	$S_n = (a + (n-1)d) + (a + (n-2)d) + \dots + (a+d) + a$	M1
	$2S_n = (2a + (n-1)d) + (2a + (n-1)d) + \dots + (2a + (n-1)d)$	M1
	$S_n = \frac{n}{2} [2a + (n-1)d]^*$ See notes below for those who use triangle numbers in their	A1*
(b)	proof	[4]
	Uses either $\frac{n}{2}(2 \times a + (n-1)7)$ or $\frac{n}{2}(a + 497)$ or $7 \times \sum_{i=1}^{n} i$	M1
	i.e $\frac{71}{2}(2 \times 7 + 70 \times 7)$ or $\frac{72}{2}(2 \times 0 + 71 \times 7)$ or $\frac{71}{2}(7 + 497)$ or $7 \times \frac{71}{2}(72)$	A1
	= 17892	A1 [3]
		7 marks
	Notes	

(a) M1: List terms including at least first two and a last term which may be a + nd or a + (n - 1)d or L
 M1: List terms in reverse including at least their last term (or correct last term) and finally their first term

M1: The LHS should be 2*S*. The RHS must follow from at least two terms correctly matching in the addition and should include at least two terms which are each **correctly** $\{2a + (n-1)d\}$ or (a + L) **or should** be $n\{2a + (n-1)d\}$ or n(a + L)

A1: Need some indication of at least three terms being added (i.e at least three terms and their pairs listed with terms correctly matching or three additions seen) and also need to achieve final answer with no errors and if *L* was used need to state that L = a + (n - 1)d

NB: Some candidates use a variation of

$$\sum_{r=1}^{n} (a + (r-1)d) = \sum_{r=1}^{n} a + d\sum_{r=1}^{n} (r-1) = na + d\frac{n}{2}(n+1) - dn \text{ or } na + d\frac{(n-1)}{2}(n)$$

And conclude that $S_n = \frac{n}{2} [2a + (n-1)d]$. This gains the full 4 marks M1M1M1A1, but must be completely correct.

(b) M1:Uses correct formula (with their *a* and *n*) with *d* =7 or with last term correct A1: Uses consistent and correct *a* and *n*A1: Correct answer

Question Number	Scheme	Marks
8.		
(a)	$u_2 = 3k - 12, \ u_3 = 3(u_2) - 12$	M1
	$u_2 = 3k - 12, \ u_3 = 9k - 48$	A1
	$u_4 = 3(9k - 48) - 12 = 27k - 156$ (ft their u_3).	M1 A1ft
(b)	27k - 156 = 15 so $k =$	[4 M1
	$k = 6\frac{1}{3}$ or $\frac{19}{3}$ or 6.33 (3sf)	A1 [2
(c)	$\sum_{i=1}^{4} u_i = 6\frac{1}{3} + 7 + 9 + 15 \text{or} \qquad \sum_{i=1}^{4} u_i = k + 3k - 12 + 9k - 48 + 27k - 156$	M1
	$=40k-216$, $=37\frac{1}{3}$ or $\frac{112}{3}$	A1ft, A1cac
		[3 9 marks
	Notes	
(a) M1: At	tempt to use formula twice to find u_2 and u_3	
	correct simplified answers	
	tempt again to find u_4	
	^h term correct and simplified - follow through their u_3	
	t their 4 th term (not 5 th) equal to 15 and attempt to find $k =$	
	ept any correct fraction or decimal answer (allow 6.33 or better here)	
using term	ses 1 st term and their following 3 terms with plus signs (either numerical or in terms of s from iteration and not formula for an AP or GP. May make a copying slip. or $40k - 216$ or follow through on their k so check $40k - 216$ for their k	k). Must be
	ains $37\frac{1}{3}$ (must be exact) if exact answer given, then isw	
Those who here.	use 6.3 will obtain 36 They should have M1A1ftA0 – should have used exact k to give	e exact answer
Those who answer her	use 6.33 will obtain 37.2 This should have M1A1ftA0 – should have used exact k to g e.	ive exact
Those who answer her	use 6.333 will obtain 37.32 This should have M1A1ftA0 – should have used exact k to e.	give exact
6.33333 w	l obtain 37.332 This should have M1A1ftA0 – should have used exact k to give exact a ill obtain 37.3332 etc All these answers should have M1A1ftA0 – should have used exact er here. Etc	
Special ca	se: Those who use $k = 6$ will obtain $6 + 6 + 6 + 6 = 24$ This is M1 A0 A0 in part (c) – a	s over

Question Number	Scheme	Marks
10 (a)	$u_2 = \frac{8}{3}$ or $2\frac{2}{3}$, $u_3 = \frac{16}{9}$ or $1\frac{7}{9}$, $u_4 = \frac{32}{27}$ or $1\frac{5}{27}$	M1, A1
(b)	$u_{20} = 4 \times \left(\frac{2}{3}\right)^{19}$; = 0.00180 or 0.0018 or exact equivalent	[2] M1; cao A1
(c)	Use $\sum_{i=1}^{16} u_i = \frac{4(1-(\frac{2}{3})^{16})}{1-\frac{2}{3}}$	[2] M1
	Find 12 - <i>their</i> $\sum_{i=1}^{16} u_i$	dM1
	= 12 - 11.9817 = awrt 0.0183	A1 [3]
(d)	12 is the sum to infinity (and all terms are positive) so sum is less than 12 Or $\sum_{i=1}^{n} u_i = \frac{4(1-(\frac{2}{3})^n)}{1-\frac{2}{3}} = 12-12(\frac{2}{3})^n$ and $(\frac{2}{3})^n > 0$ so is less than 12	B1 [1]
	<i>I</i> =1 3	[8 marks]

(a)

M1 Any one term is 2/3 the previous term. Accept for example
$$u_2 = awrt 2.67$$

A1 All 3 terms correct. Accept exact equivalents
$$u_2 = \frac{8}{3}$$
 or $2\frac{2}{3}$, $u_3 = \frac{16}{9}$ or $1\frac{7}{9}$, $u_4 = \frac{32}{27}$ or $1\frac{5}{27}$
(b)

M1 Uses correct nth term formula ar^{n-1} with a = 4, n = 20 and $r = \frac{2}{3}, \frac{3}{2}$ or awrt 0.7 Condone for the M mark use of ar^{n-1} with $a = \frac{8}{3}$ (awrt 2.67), n = 20 and $r = \frac{2}{3}, \frac{3}{2}$ or awrt 0.7 Expressions such as $4 \times (\frac{2}{3})^{19}$, $\frac{8}{3} \times (\frac{2}{3})^{18}$ and $\frac{2^{n+1}}{3^{n-1}} \rightarrow \frac{2^{21}}{3^{19}}$ are correct and sufficient for M1 A1 Accept any of 0.0018, 0.00180, 1.80×10^{-3} or 1.8×10^{-3}

(c)

M1 Uses the correct sum formula
$$S = \frac{a(r^n - 1)}{(r - 1)}$$
 or $S = \frac{a(1 - r^n)}{(1 - r)}$ with $a = 4, r = \frac{2}{3}, \frac{3}{2}$ or awrt 0.7, $n = 16$
Condone the sum formula $S = \frac{a(r^n - 1)}{(r - 1)}$ or $S = \frac{a(1 - r^n)}{(1 - r)}$ with $a = \frac{8}{3}$ (awrt 2.67), $r = \frac{2}{3}, \frac{3}{2}$ or awrt 0.7, $n = 16$
dM1 Dependent upon the previous M mark. Score for an attempt at finding $12 - \sum_{i=1}^{16} u_i$

A1 awrt 0.0183

Note: Some candidates may list all 16 terms which is acceptable provided the answer is accurate

(d)

B1 Need a reason + a minimal conclusion. Eg The sum to infinity =12 and sum is less than 12 Allow sum to infinity is 12, hence true.

Question Number	Scheme	Marks
5(i)		
(a)	$(U_2) = \frac{4}{4-3} = 4$	B1
(b)	$\sum_{n=1}^{100} U_n = 100 \times 4 = 400$	(1) M1A1
5(ii)	$\sum_{r=1}^{n} (100 - 3r) < 0 \Longrightarrow 97 + 94 + 91 + \dots (100 - 3r) < 0$	(2)
	\sum AP with $a = 97, d = -3, n = n, S < 0 \Rightarrow 0 = \frac{n}{2}(2 \times 97 + (n-1) \times -3) < 0$	M1
	$\Rightarrow \frac{n}{2}(197 - 3n) < 0 \Rightarrow n > 65.6$	dM1
	$\Rightarrow n = 66$	A1
		(3) (6 marks)
(ii) ALT I	$\sum_{r=1}^{n} (100 - 3r) < 0 \Longrightarrow \sum_{r=1}^{n} 3r > \sum_{r=1}^{n} 100$	
	$\Rightarrow 3\frac{n(n+1)}{2} > 100n$	M1 M1A1
	$\Rightarrow n > 65.6 \Rightarrow n = 66$	

(i)(a)

B1 States that U_2 is 4. Accept $\frac{4}{1}$ but not $\frac{4}{4-3}$ and remember to isw. Note that $U_1 = 4$ so be sure that you don't award this B1

(i)(b)

M1 Uses the method that $\sum_{n=1}^{100} U_n = k \times 4$ where k = 100 or 99 You may see the AP formula being used which is fine as long as a = 4, d = 0 and n = 99/100Look for expression of the form $\frac{100}{2} \{2 \times 4 + 99 \times 0\}$ OR $\frac{100}{2} \{4 + 4\}$ A1 400

Question	Scheme	Marks		
6.				
(a)	$u_2 = 24$, $u_3 = 16$ and $u_4 = \frac{32}{3}$	M1, A1		
	5	[2] B1		
(b)	$r = \frac{2}{3}$	[1]		
(c)	$u_{11} = ar^{10} = 36 \times (r)^{10} \qquad .$	M1		
	$u_{11} = ar^{10} = 36 \times \left(\frac{2}{3}\right)^{10} = \left(\frac{4096}{6561}\right)$			
	= 0.6243	A1 [2]		
(d)	$\sum_{i=1}^{6} u_i = \frac{36(1 - \left(\frac{2}{3}\right)^6)}{1 - \frac{2}{3}} \text{ or } \sum_{i=1}^{6} u_i = 36 + 24 + 16 + \frac{32}{3} + u_5 + u_6$	M1		
	$=98\frac{14}{27}$	A1cao		
(e)	$\sum_{i=1}^{\infty} u_i = \frac{36}{1-\frac{2}{5}} = 108$	[2] M1 A1		
	$\sum_{i=1}^{2} u_i = \frac{1}{1 - \frac{2}{3}} = 108$	[2]		
	Notes	9 marks		
(a)				
M1: Atter	M1: Attempt to use formula correctly at least twice. It may be seen for example in u_3 and u_4			
A1: All th	nree correct exact simplified answers. Allow 10.6			
(b)				
B1: Acce	B1: Accept $\frac{2}{3}$ or equivalent such as $\frac{24}{36}$ Allow awrt 0.667			
(c) M1: Uses	(c) M1: Uses $u_{11} = ar^{10} = 36 \times (r)^{10}$ with their r			
6561				
 (d) M1: Uses correct sum formula with a = 36 and their r or alternatively for adding their first six terms. FYI Sight of 36, 24, 16, 10.7, 7.1, 4.7 followed by 98.5 implies this mark. (You may only see the first 4 terms in part a) 				
A1: Obtai				
M1: Uses correct sum to infinity formula with $a = 36$ and either $r = \frac{2}{3}$ or their r as long as $ r < 1$				
	A1: Obtains 108 (must be exact)			

Question Number	Scheme		Marks
4 (a)	$S_{9} = 54$ $\Rightarrow 54 = \frac{9}{2}(2a+8d)$ or $\Rightarrow 54 = \frac{9}{2}(a+a+8d)$	Uses a correct sum formula with $n = 9$ and $S_9 = 54$	M1
	$\Rightarrow a + 4d = 6^*$	cso	A1*
-	Lis	ting:	
	a+a+d+a+2d	a + + a + 8d = 54	
	\Rightarrow 9a + 36	<i>d</i> = 54	
	Scores M1 for attempting to s	um 9 terms (both lines needed)	
		or	
		a+5d+a+6d+a+7d+a+8d=54	
-	Scores W1 on its own and the	n A1 if they complete correctly.	
-			(2)
(b)	$a+7d = \frac{1}{2}(a+6d)$ or $\frac{1}{2}(a+7d) = a+6d$	Uses $t_8 = \frac{1}{2}t_7$ or $\frac{1}{2}t_8 = t_7$ to produce one of these equations.	M1
	$\Rightarrow 6 - 4d + 7d = \frac{1}{2}(6 - 4d + 6d)$ $\Rightarrow d = \dots$	Uses the given equation from (a) and their second linear <u>equation</u> in a and d and proceeds to find a value for either a or d .	M1
	$\Rightarrow d = -1.5, a = 12$	A1: Either $d = -1.5$ (<i>oe</i>) or $a = 12$ A1: Both $d = -1.5$ (<i>oe</i>) and $a = 12$	- A1A1
	Note that use of $\frac{1}{2}t_8 = t_7$ in	(b) gives $a = 30$ and $d = -6$	
			(4)
			(6 marks)

Number	Scheme	Marks
9.(a)	$a = 7k - 5$, $ar = 5k - 7$ and $ar^2 = 2k + 10$	B1
	(So $r = 1$) $\frac{5k-7}{7k-5} = \frac{2k+10}{5k-7}$ or $(7k-5)(2k+10) = (5k-7)^2$ or equivalent	M1
	See $(5k-7)^2 = 25k^2 - 70k + 49$	M1
	$14k^2 + 60k - 50 = 25k^2 - 70k + 49 \rightarrow 11k^2 - 130k + 99 = 0 *$	A1cso *
(b)	(k-11)(11k-9) so $k=$	M1
	k = 9/11 only* (after rejecting 11) N.B. Special case $k = 9/11$ can be verified in (b) (1 mark only)	A1*
	$11 \times \left(\frac{9}{11}\right)^2 - 130 \times \left(\frac{9}{11}\right) + 99 = \frac{81}{11} - \frac{1170}{11} + \frac{1089}{11} = 0 \text{M1A0}$	(2
(c)	$a = \frac{8}{11}$	B1
	$\frac{5 \times \frac{9}{11} - 7}{7 \times \frac{9}{11} - 5} or \frac{2 \times \frac{9}{11} + 10}{5 \times \frac{9}{11} - 7} \text{so} r = -4$	B1
	(i) Fourth term = $ar^3 = -\frac{512}{11}$	M1A1
	(ii) $S_{10} = \frac{a(1-r^{10})}{(1-r)} = \frac{\frac{8}{11}(1-(-4)^{10})}{(1-(-4))} = -152520$	M1A1
		[1]
	Notes	· · · · ·
B1: Corre can (Th	arts (a) and (b) together ect statement (needs all three terms)– this may be omitted and implied by correct statement didates may use geometric mean, or may use ratio of terms being equal and give a correct lin is would earn the B1M1 immediately) d Attempt to eliminate <i>a</i> and <i>r</i> and to obtain equation in <i>k</i> only	
	rect expansion of $(5k - 7)^2 = 25k^2 - 70k + 49$ - may have four terms $(5k - 7)^2 = 25k^2 - 35$	k - 35k + 49
A1cso: N (b) M1: Att mar	To incorrect work seen. The printed answer is obtained including "=0". empt to solve quadratic by usual methods (factorisation, completion of square or formula – s k scheme) or see $9/11$ substituted and given as "=0" for M1A0	ee notes at start of
Alternati (c) Mark p	1 only and 11 should be seen and rejected. Accept 9/11 underlined or $k=9/11$ written on followly $(k-11)$ may be seen in the factorisation and a statement 'k not integer' given with $k=9/4$ arts (i) and (ii) together	
31: $a = \frac{8}{11}$	or any equivalent (If not stated explicitly or used in formula may be implied by correct answ	ver to (ii))
11	es $k = 9/11$ completely and obtain $r = -4$ (If not stated explicitly, may be implied by correct	answer to (i) or (ii
(i) M1: Us	e of correct formula with $n = 4$ a and/or r may still be in terms of k or uses $(2k+10) \times r$. May prect exact answer	

NB Correct formula **with negative sign** in numerator followed by the incorrect $(8/11)(1+4^{10})/(1-(-4))$ usually found equal to 152520.2909 with no negative sign can be allowed M1A0 but if the incorrect numerical expression appears on its own with no formula then M0A0

Listing terms can get: B1 (first term) B1 M1A1 (implied by correct 4th term) M1A1 (implied by -152520)

Number	Scheme	Marks
5.(i)	Mark (a) and (b) together	
(a)	$a + ar = 34$ or $\frac{a(1-r^2)}{(1-r)} = 34$ or $\frac{a(r^2-1)}{(r-1)} = 34$; $\frac{a}{1-r} = 162$	B1; B
(Way 1)	Eliminate <i>a</i> to give $(1+r)(1-r) = \frac{17}{81}$ or $1-r^2 = \frac{34}{162}$ (not a cubic)	aM1
	(and so $r^2 = \frac{64}{81}$ and) $r = \frac{8}{9}$ only	aA1 (4
(b)	Substitute their $r = \frac{8}{9}$ ($0 < r < 1$) to give $a = a = 18$	bM1 bA1 (2
(Way 2) Part (b) first	Eliminate <i>r</i> to give $\frac{34-a}{a} = 1 - \frac{a}{162}$	bM1
	gives $a = 18$ or 306 and rejects 306 to give $a = 18$	bA1
Then part (a) again	Substitute $a = 18$ to give $r =$	aM1
	$r=\frac{8}{9}$	aA1
(ii)	$\frac{42(1-\frac{6}{7}^n)}{1-\frac{6}{7}} > 290$ (For trial and improvement approach see notes below)	M1
	to obtain So $\left(\frac{6}{7}\right)^n < \left(\frac{4}{294}\right)$ or equivalent e.g. $\left(\frac{7}{6}\right)^n > \left(\frac{294}{4}\right)$ or $\left(\frac{6}{7}\right)^n < \left(\frac{2}{147}\right)$	A1
	So $n > \frac{\log''(\frac{4}{294})''}{\log(\frac{6}{7})}$ or $\log_{\frac{6}{7}}''(\frac{4}{294})''$ or equivalent but must be log of positive quantity	M1
	(i.e. $n > 27.9$) so $n = 28$	A1 (4
B1 Way 1: aN	:: Writes a correct equation connecting <i>a</i> and <i>r</i> and 34 (allow equivalent equations – may be implied) :: Writes a correct equation connecting <i>a</i> and <i>r</i> and 162 (allow equivalent equation – may be implied) 11 : Eliminates <i>a</i> correctly for these two equations to give $(1+r)(1-r) = \frac{17}{81}$ or $(1+r)(1-r) = \frac{34}{162}$ or equation a cubic – should have factorized (1 - <i>r</i>) to give a correct quadratic 1: Correct value for <i>r</i> . Accept 0.8 recurring or 8/9 (not 0.889) Must only have positive value.	ivalent –
bA	11 : Substitutes their $r (0 < r < 1)$ into a correct formula to give value for a . Can be implied by $a = 18$ 1 : must be 18 (not answers which round to 18) and a first - B1 , B1 : As before then award the (b) M and A marks before the (a) M and A marks	
bM	1 : Eliminates <i>r</i> correctly to give $\frac{34-a}{a} = 1 - \frac{a}{162}$ or $a^2 - 324a + 5508 = 0$ or equivalent	
bAl	a 162 : Correct value for a so $a = 18$ only. (Only award after 306 has been rejected) 1: Substitutes their 18 to give $r =$	
aA1	$r = \frac{8}{9}$ only	
	Allow <i>n</i> or <i>n</i> – 1 and any symbols from ">", "<", or "=" etc A1 : Must be power <i>n</i> (not <i>n</i> – 1) with any s	symbol
	ses logs correctly on $\left(\frac{6}{7}\right)^n$ or $\left(\frac{7}{6}\right)^n$ not on $(36)^n$ to get as far as <i>n</i> Allow any symbol	tite
lo fol	= 28 cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the negating $\binom{6}{7}$ or any contradictory statements must be penalised here) Those with equals throughout may gain this n low 27.9 by <i>n</i> =28. Just <i>n</i> = 28 without mention of 27.9 is only allowed following correct inequality work. e: Trial and improvement : Gives <i>n</i> = 28 as <i>S</i> = awrt 290.1 (M1A1) and when <i>n</i> = 27 <i>S</i> = (awrt) 289 so <i>n</i> =	nark if the

Question Number	Scheme	Marks
5. (a)	$a = 4p$, $ar = (3p+15)$ and $ar^2 = 5p + 20$	B1
	(So $r = 1$) $\frac{5p+20}{3p+15} = \frac{3p+15}{4p}$ or $4p(5p+20) = (3p+15)^2$ or equivalent	M1
	See $(3p+15)^2 = 9p^2 + 90p + 225$	M1
	$20p^2 + 80p = 9p^2 + 90p + 225 \rightarrow 11p^2 - 10p - 225 = 0$ *	A1 *
		(4)
(b)	(p-5)(11p+45) so $p =$	M1
	p = 5 only (after rejecting - $45/11$) <u>N.B. Special case $p = 5$ can be verified in (b) (1 mark only)</u>	A1
	$11 \times 5^2 - 10 \times 5 - 225 = 275 - 50 - 225 = 0 \text{M1A0}$	
(c)	$\frac{3 \times 5 + 15}{4 \times 5}$ or $\frac{5 \times 5 + 20}{3 \times 5 + 15}$	(2) M1
	$r = \frac{3}{2}$	A1
		(2)
(d)	$S_{10} = \frac{20\left(1 - \left("\frac{3}{2}"\right)^{10}\right)}{\left(1 - "\frac{3}{2}"\right)}$	M1A1ft
	(=2266.601568) = 2267	A1
		(3) Total 11
	Notes for Question 5	-
(a)	B1: Correct statement (needs all three terms)– this may be omitted and implied by correct statement in <i>p</i> only as candidates may use geometric mean, or may use ratio of terms being equal a give a correct line 2 without line 1. (This would earn the B1M1 immediately) M1: Valid Attempt to eliminate <i>a</i> and <i>r</i> and to obtain equation in <i>p</i> only	
	M1: Correct expansion of $(3p+15)^2 = 9p^2 + 90p + 225$	
(b)	A1cso: No incorrect work seen. The printed answer is obtained. NB Those who show $p = 5$ in part (a) obtain no credit for this	
(b)	M1: Attempt to solve quadratic by usual methods (factorisation, completion of square or formula) Must appear in part (b) – not part (a)	
(c)	A1: 5 only and -45/11 should be seen and rejected or $(11p + 45)$ seen and statement $p > 0$ M1: Substitutes $p = 5$ completely and attempt ratio (correct way up)	
(d)	A1: 1.5 or any equivalent M1: Use of correct formula with $n = 10 a$ and/or r may still be in terms of p A1ft: Correct expression ft on their r only – must have $a = 20$ and power = 10 here A1 2267 (accept awrt 2267)	