Question	Scheme	Marks	AOs
9	$a=\left(\frac{3}{4}\right)^{2} \quad \text { or } \quad a=\frac{9}{16}$ or $r=-\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\frac{\frac{9}{16}}{1-\left(-\frac{3}{4}\right)}=\ldots$	M1	3.1a
	$=\frac{9}{28} *$	A1*	1.1b
		(3)	
	Alternative 1:		
	$\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\frac{-\frac{3}{4}}{1-\left(-\frac{3}{4}\right)}=\ldots \text { or } r=-\frac{3}{4}$	B1	2.2a
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=-\frac{3}{7}-\left(-\frac{3}{4}\right)$	M1	3.1a
	$=\frac{9}{28} *$	A1*	1.1b
	Alternative 2:		
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{3}+\left(\frac{3}{4}\right)^{4}-\ldots$	B1	2.2a
	$\begin{gathered} =\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{4}+\ldots-\left(\frac{3}{4}\right)^{3}-\left(\frac{3}{4}\right)^{5}-\ldots \\ \left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{4}+\ldots=\left(\frac{3}{4}\right)^{2}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right) \text { or }-\left(\frac{3}{4}\right)^{3}-\left(\frac{3}{4}\right)^{5}-\ldots=-\left(\frac{3}{4}\right)^{3}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right) \\ \sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=\left(\frac{3}{4}\right)^{2}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right)-\left(\frac{3}{4}\right)^{3}\left(\frac{1}{1-\left(\frac{3}{4}\right)^{2}}\right) \end{gathered}$	M1	3.1a
	$=\frac{9}{28} *$	A1*	1.1b
	Alternative 3:		
	$\sum_{n=2}^{\infty}\left(\frac{3}{4}\right)^{n} \cos (180 n)^{\circ}=S=\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{3}+\left(\frac{3}{4}\right)^{4}-\ldots$	B1	2.2a
	$=\left(\frac{3}{4}\right)^{2}\left(1-\left(\frac{3}{4}\right)+\left(\frac{3}{4}\right)^{2}-\ldots\right)=\left(\frac{3}{4}\right)^{2}\left(\frac{1}{4}+S\right) \Rightarrow \frac{7}{16} S=\frac{9}{64} \Rightarrow S=\ldots$	M1	3.1a
	$=\frac{9}{28}$ *	A1*	1.1b
(3 marks)			
Notes			

Question	Scheme	Marks	AOs
1(a)	$16+(21-1) \times d=24 \Rightarrow d=\ldots$	M1	1.1b
	$d=0.4$	A1	1.1b
	Answer only scores both marks.		
		(2)	
(b)	$S_{n}=\frac{1}{2} n\{2 a+(n-1) d\} \Rightarrow S_{500}=\frac{1}{2} \times 500\{2 \times 16+499 \times$ "0.4" $\}$	M1	1.1b
	$=57900$	A1	1.1b
	Answer only scores both marks		
		(2)	
	(b) Alternative using $S_{n}=\frac{1}{2} n\{a+l\}$		
	$l=16+(500-1) \times$ "0.4" $=215.6 \Rightarrow S_{500}=\frac{1}{2} \times 500\{16+" 215.6 "\}$	M1	1.1b
	$=57900$	A1	1.1b
(4 marks)			
Notes			
(a) M1: Correct strategy to find the common difference - must be a correct method using $a=16$, and $n=21$ and the 24 . The method may be implied by their working. If the AP term formula is quoted it must be correct, so use of e.g. $u_{n}=a+n d$ scores M0 A1: Correct value. Accept equivalents e.g. $\frac{8}{20}, \frac{4}{10}, \frac{2}{5}$ etc. (b) M1: Attempts to use a correct sum formula with $a=16, n=500$ and their numerical d from part (a) If a formula is quoted it must be correct (it is in the formula book) A1: Correct value Alternative: M1: Correct method for the $500^{\text {th }}$ term and then uses $S_{n}=\frac{1}{2} n\{a+l\}$ with their l A1: Correct value Note that some candidates are showing implied use of $u_{n}=a+n d$ by showing the following: (a) $d=\frac{24-16}{21}=\frac{8}{21}$ (b) $S_{500}=\frac{1}{2} \times 500\left\{2 \times 16+499 \times \frac{8}{21}\right\}=55523.80952 \ldots$ This scores (a) M0A0 (b) M1A0			

$\left.\begin{array}{|c|c|c|c|}\hline \text { Question } & \text { Scheme } & \text { Marks } & \text { AOs } \\ \hline \text { 3(a) } & u_{2}=k-12, u_{3}=k-\frac{24}{k-12}\end{array}\right)$
(a)

M1: Attempts to apply the sequence formula once for either u_{2} or u_{3}.
Usually for $u_{2}=k-\frac{24}{2}$ o.e. but could be awarded for $u_{3}=k-\frac{24}{\text { their } " u_{2} "}$
dM1: Award for

- attempting to apply the sequence formula to find both u_{2} and u_{3}
- using $2+2 " u_{2} "+" u_{3} "=0 \Rightarrow$ an equation in k. The u_{3} may have been incorrectly adapted

A1*: Fully correct work leading to the printed answer.
There must be

- (at least) one correct intermediate line between $2+2(k-12)+k-\frac{24}{k-12}=0$ (o.e.) and the given answer that shows how the fractions are "removed". E.g. $(3 k-22)(k-12)-24=0$
- no errors in the algebra. The $=0$ may just appear at the answer line.
(b)

M1: Attempts to solve the quadratic which is implied by sight of $k=6$.
This may be awarded for any of

- $3 k^{2}-58 k+240=(a k \pm c)(b k \pm d)=0$ where $a b=3, c d=240$ followed by $k=$
- an attempt at the correct quadratic formula (or completing the square)
- a calculator solution giving at least $k=6$

A1: Chooses $k=6$ and gives a minimal reason
Examples of a minimal reason are

- 6 because it is an integer
- 6 because it is a whole number
- 6 because $\frac{40}{3}$ or 13.3 is not an integer
(c)

B1: Deduces the correct value of u_{3}.

Question	Scheme	Marks	AOs
4	(i) $\sum_{r=1}^{16}\left(3+5 r+2^{r}\right)=131798$; (ii) $u_{1}, u_{2}, u_{3}, \ldots,: u_{n+1}=\frac{1}{u_{n}}, u_{1}=\frac{2}{3}$		
(i) Way 1	$\left\{\sum_{r=1}^{16}\left(3+5 r+2^{r}\right)=\right\} \sum_{r=1}^{16}(3+5 r)+\sum_{r=1}^{16}\left(2^{r}\right)$	M1	3.1a
	16 (2) 8 +15(5)) $+2\left(2^{16}-1\right)$	M1	1.1b
	$=\frac{16}{2}(2(8)+15(5))+\frac{2(2-1}{2-1}$	M1	1.1b
	$=728+131070=131798$ *	A1*	2.1
		(4)	
(i) Way 2	$\left\{\sum_{r=1}^{16}\left(3+5 r+2^{r}\right)=\right\} \sum_{r=1}^{16} 3+\sum_{r=1}^{16}(5 r)+\sum_{r=1}^{16}\left(2^{r}\right)$	M1	3.1a
	$=(3 \times 16)+\frac{16}{2}(2(5)+15(5))+\frac{2\left(2^{16}-1\right)}{2-1}$	M1	1.1b
	$=(3 \times 16)+\frac{1}{2}(2(5)+15(5))+\frac{2(2)}{2-1}$	M1	1.1b
	$=48+680+131070=131798$ *	A1*	2.1
		(4)	
(i) Way 3	$\begin{aligned} \text { Sum }= & 10+17+26+39+60+97+166+299+560+1077+2106 \\ & +4159+8260+16457+32846+65619=131798 * \end{aligned}$	M1	3.1a
		M1	1.1b
		M1	1.1b
		A1*	2.1
		(4)	
(ii)	$\left\{u_{1}=\frac{2}{3}\right\}, u_{2}=\frac{3}{2}, u_{3}=\frac{2}{3}, \ldots($ can be implied by later working)	M1	1.1b
	$\left\{\sum_{r=1}^{100} u_{r}=\right\} 50\left(\frac{2}{3}\right)+50\left(\frac{3}{2}\right)$ or $50\left(\frac{2}{3}+\frac{3}{2}\right)$	M1	2.2a
	$=\frac{325}{3}\left(\right.$ or $108 \frac{1}{3}$ or 108.3 or $\frac{1300}{12}$ or $\left.\frac{650}{6}\right)$	A1	1.1b
		(3)	
(7 marks)			

Question	Scheme	Marks	AOs
$\begin{gathered} 8(\mathbf{i}) \\ \text { Way } 1 \end{gathered}$	$\sum_{r=4}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}=20\left(\frac{1}{2}\right)^{4}+20\left(\frac{1}{2}\right)^{5}+20\left(\frac{1}{2}\right)^{6}+\ldots$		
	$=20\left(\frac{1}{2}\right)^{4}$	M1	1.1b
	1-2	M1	3.1a
	$\{=(1.25)(2)\}=2.5$ o.e.	A1	1.1b
		(3)	
$\begin{gathered} (\text { i) } \\ \text { Way } 2 \end{gathered}$	$\sum_{r=4}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}=\sum_{r=1}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}-\sum_{r=1}^{3} 20 \times\left(\frac{1}{2}\right)^{r}$		
	$10-(10+5+2.5)$ or $=\frac{10}{10} 10\left(1-\left(\frac{1}{2}\right)^{3}\right)$	M1	1.1b
	$1-\frac{1}{2}\left(1-\frac{1}{2} \quad 1-\frac{1}{2}\right.$	M1	3.1a
	$\{=20-17.5\}=2.5$ o.e.	A1	1.1b
		(3)	
$\begin{gathered} \text { (i) } \\ \text { Way } 3 \end{gathered}$	$\sum_{r=4}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}=\sum_{r=0}^{\infty} 20 \times\left(\frac{1}{2}\right)^{r}-\sum_{r=0}^{3} 20 \times\left(\frac{1}{2}\right)^{r}$		
	$20-(20+10+5+25)$ or $=\frac{20}{1-1}-\frac{20\left(1-\left(\frac{1}{2}\right)^{4}\right)}{1-\frac{1}{2}}$	M1	1.1 b
	$\frac{1-\frac{1}{2}}{}-(20+10+5+2.5)$ or $=\frac{2}{1-\frac{1}{2}}-\frac{1-\frac{1}{2}}{}$	M1	3.1a
	$\{=40-37.5\}=2.5$ o.e.	A1	1.1b
		(3)	
(ii) Way 1	$\left\{\sum_{n=1}^{48} \log _{5}\left(\frac{n+2}{n+1}\right)=\right\}$		
	$=\log \left(\frac{3}{2}\right)+\log \left(\frac{4}{3}\right)+\ldots+\log \left(\frac{50}{49}\right)=\log \left(\frac{3}{2} \times \frac{4}{3} \times \times \frac{50}{49}\right)$	M1	1.1b
	$=\log _{5}\left(\frac{7}{2}\right)+\log _{5}\left(\frac{\overline{3}}{}\right)+\ldots \ldots+\log _{5}\left(\frac{\overline{49}}{}\right)=\log _{5}\left(\frac{3}{2} \times \frac{-}{3} \times \ldots \times \frac{\overline{49}}{}\right)$	M1	3.1a
	$=\log _{5}\left(\frac{50}{2}\right)$ or $\log _{5}(25)=2 *$	A1*	2.1
		(3)	
$\begin{gathered} \text { (ii) } \\ \text { Way } 2 \end{gathered}$	$\left\{\sum_{n=1}^{48} \log _{5}\left(\frac{n+2}{n+1}\right)=\right\} \sum_{n=1}^{48}\left(\log _{5}(n+2)-\log _{5}(n+1)\right)$	M1	1.1b
	$=\left(\log _{5} 3+\log _{5} 4+\ldots \ldots .+\log _{5} 50\right)-\left(\log _{5} 2+\log _{5} 3+\ldots \ldots .+\log _{5} 49\right)$	M1	3.1a
	$=\log _{5} 50-\log _{5} 2$ or $\log _{5}\left(\frac{50}{2}\right)$ or $\log _{5}(25)=2 *$	A1*	2.1
		(3)	
(6 marks)			

Question	Scheme	Marks	AOs
13 (a)	Uses the sequence formula $a_{n+1}=\frac{k\left(a_{n}+2\right)}{a_{n}}$ once with $a_{1}=2$	M1	1.1 b
	$\left(a_{1}=2\right), a_{2}=2 k, a_{3}=k+1, a_{4}=\frac{k(k+3)}{k+1}$ Finds four consecutive terms and sets a_{4} equal to a_{1} (oe)	M1	3.1a
	$\frac{k(k+3)}{k+1}=2 \Rightarrow k^{2}+3 k=2 k+2 \Rightarrow k^{2}+k-2=0 *$	A1*	2.1
		(3)	
(b)	States that when $k=1$, all terms are the same and concludes that the sequence does not have a period of order 3	B1	2.3
		(1)	
(c)	Deduces the repeating terms are $a_{1 / 4}=2, a_{2 / 5}=-4, a_{3 / 6}=-1$,	B1	2.2a
	$\sum_{n=1}^{80} a_{k}=26 \times(2+-4+-1)+2+-4$	M1	3.1a
	$=-80$	A1	1.1b
		(3)	
(7 marks)			

Notes:

Question	Scheme	Marks	AOs
15(a)	$S_{n}=a+a r+a r^{2}+\ldots \ldots \ldots+a r^{n-1}$	B1	1.2
	$r S_{n}=a r+a r^{2}+a r^{3}+\ldots \ldots \ldots+a r^{n} \Rightarrow S_{n}-r S_{n}=\ldots$	M1	2.1
	$S_{n}-r S_{n}=a-a r^{n}$	A1	1.1b
	$S_{n}(1-r)=a\left(1-r^{n}\right) \Rightarrow S_{n}=\frac{a\left(1-r^{n}\right)}{(1-r)} *$	A1*	2.1
		(4)	
(b)	$\frac{a\left(1-r^{10}\right)}{1-r}=4 \times \frac{a\left(1-r^{5}\right)}{1-r} \text { or } 4 \times \frac{a\left(1-r^{10}\right)}{1-r}=\frac{a\left(1-r^{5}\right)}{1-r}$ Equation in r^{10} and r^{5} (and possibly $1-r$)	M1	3.1a
	$1-r^{10}=4\left(1-r^{5}\right)$	A1	1.1b
	$r^{10}-4 r^{5}+3=0 \Rightarrow\left(r^{5}-1\right)\left(r^{5}-3\right)=0 \Rightarrow r^{5}=\ldots$ or e.g. $1-r^{10}=4\left(1-r^{5}\right) \Rightarrow\left(1-r^{5}\right)\left(1+r^{5}\right)=4\left(1-r^{5}\right) \Rightarrow r^{5}=\ldots$	dM1	2.1
	$r=\sqrt[5]{3}$ oe only	A1	1.1b
		(4)	
(8 marks)			

Question Number	Scheme	Marks
5. (a)	$S_{n}=a \quad+(a+d) \quad+(a+2 d)+\ldots \quad+(a+(n-1) d)$	M1
	$S_{n}=(a+(n-1) d)+(a+(n-2) d)+\ldots \quad+(a+d)+a$	M1
	$2 S_{n}=(2 a+(n-1) d)+(2 a+(n-1) d)+\ldots .+(2 a+(n-1) d)$	M1
	$S_{n}=\frac{n}{2}[2 a+(n-1) d]^{*}$ See notes below for those who use triangle numbers in their proof	A1*
(b)	Uses either $\frac{n}{2}(2 \times a+(n-1) 7) \quad$ or $\quad \frac{n}{2}(a+497) \quad$ or $7 \times \sum_{i=1}^{n} i$	M1
	i.e $\frac{71}{2}(2 \times 7+70 \times 7)$ or $\frac{72}{2}(2 \times 0+71 \times 7) \quad$ or $\frac{71}{2}(7+497) \quad$ or $7 \times \frac{71}{2}(72)$	A1
	$=17892$	A1
		[3]
		7 marks
	Notes	

(a) M1: List terms including at least first two and a last term which may be $a+n d$ or $a+(n-1) d$ or L M1: List terms in reverse including at least their last term (or correct last term) and finally their first term
M1: The LHS should be $2 S$. The RHS must follow from at least two terms correctly matching in the addition and should include at least two terms which are each correctly $\{2 a+(n-1) d\}$ or $(a+L)$ or should be $n\{2 a+(n-1) d\}$ or $n(a+L)$
A1: Need some indication of at least three terms being added (i.e at least three terms and their pairs listed with terms correctly matching or three additions seen) and also need to achieve final answer with no errors and if L was used need to state that $L=a+(n-1) d$
NB: Some candidates use a variation of
$\sum_{r=1}^{n}\left(a+(r-1) d=\sum_{r=1}^{n} a+d \sum_{r=1}^{n}(r-1)=n a+d \frac{n}{2}(n+1)-d n\right.$ or $n a+d \frac{(n-1)}{2}(n)$
And conclude that $S_{n}=\frac{n}{2}[2 a+(n-1) d]$. This gains the full 4 marks M1M1M1A1, but must be completely correct.
(b) M1:Uses correct formula (with their a and n) with $d=7$ or with last term correct

A1: Uses consistent and correct a and n
A1: Correct answer

Question Number	Scheme	Marks
8. (a)	$\begin{aligned} & u_{2}=3 k-12, u_{3}=3\left(u_{2}\right)-12 \\ & \quad u_{2}=3 k-12, u_{3}=9 k-48 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
(b)	$\begin{aligned} & u_{4}=3(9 k-48)-12=27 k-156 \quad\left(\text { ft their } u_{3}\right) \\ & \quad 27 k-156=15 \text { so } k= \end{aligned}$	M1 A1ft [4] M1
(c)	$k=6 \frac{1}{3}$ or $\frac{19}{3}$ or $6.33(3 \mathrm{sf})$	A1 [2]
	$\begin{aligned} \sum_{i=1}^{4} u_{i}=6 \frac{1}{3}+7+9+15 \text { or } \sum_{i=1}^{4} u_{i} & =k+3 k-12+9 k-48+27 k-156 \\ =40 k-216, & =37 \frac{1}{3} \text { or } \frac{112}{3} \end{aligned}$	M1
		Alft, Alcao
		[3]
		9 marks
	Notes	

(a) M1: Attempt to use formula twice to find u_{2} and u_{3}

A1: two correct simplified answers
M1: Attempt again to find u_{4}
A1ft: $4^{\text {th }}$ term correct and simplified - follow through their u_{3}
(b) M1: Put their $4^{\text {th }}$ term (not $\left.5^{\text {th }}\right)$ equal to 15 and attempt to find $k=$

A1: accept any correct fraction or decimal answer (allow 6.33 or better here)
(c) M1: Uses $1^{\text {st }}$ term and their following 3 terms with plus signs (either numerical or in terms of k). Must be using terms from iteration and not formula for an AP or GP. May make a copying slip.

A1ft: for $40 k-216$ or follow through on their k so check $40 k-216$ for their k
A1: obtains $37 \frac{1}{3}$ (must be exact) if exact answer given, then isw
Those who use 6.3 will obtain 36 They should have M1A1ftA0 - should have used exact k to give exact answer here.
Those who use 6.33 will obtain 37.2 This should have M1A1ftA0 - should have used exact k to give exact answer here.
Those who use 6.333 will obtain 37.32 This should have M1A1ftA0 - should have used exact k to give exact answer here.
6.3333 will obtain 37.332 This should have M1A1ftA0 - should have used exact k to give exact answer here. 6.33333 will obtain 37.3332 etc All these answers should have M1A1ftA0 - should have used exact k to give exact answer here. Etc
Special case: Those who use $k=6$ will obtain $6+6+6+6=24$ This is M1 A0 A0 in part (c) - as over simplified

Question Number	Scheme	Marks
10 (a)	$u_{2}=\frac{8}{3}$ or $2 \frac{2}{3}, u_{3}=\frac{16}{9}$ or $1 \frac{7}{9}, u_{4}=\frac{32}{27}$ or $1 \frac{5}{27}$	M1, A1
(b)	$u_{20}=4 \times\left(\frac{2}{3}\right)^{19} ;=0.00180$ or 0.0018 or exact equivalent	M1; cao A1
(c)	Use $\sum_{i=1}^{16} u_{i}=\frac{4\left(1-\left(\frac{2}{3}\right)^{16}\right)}{1-\frac{2}{3}}$	M1
	Find 12-their $\sum^{16} u_{i}$	dM1
	$=12-11.9817=\text { awrt } 0.0183$	A1
(d)	12 is the sum to infinity (and all terms are positive) so sum is less than 12 Or $\sum_{i=1}^{n} u_{i}=\frac{4\left(1-\left(\frac{2}{3}\right)^{n}\right)}{1-\frac{2}{3}}=12-12\left(\frac{2}{3}\right)^{n}$ and $\left(\frac{2}{3}\right)^{n}>0$ so is less than 12	B1 [1]
		[8 marks]

(a)

M1 Any one term is $2 / 3$ the previous term. Accept for example $u_{2}=$ awrt 2.67
A1 All 3 terms correct. Accept exact equivalents $u_{2}=\frac{8}{3}$ or $2 \frac{2}{3}, u_{3}=\frac{16}{9}$ or $1 \frac{7}{9}, u_{4}=\frac{32}{27}$ or $1 \frac{5}{27}$
(b)

M1 Uses correct nth term formula $a r^{n-1}$ with $a=4, n=20$ and $r=\frac{2}{3}, \frac{3}{2}$ or awrt 0.7
Condone for the M mark use of $a r^{n-1}$ with $a=\frac{8}{3}$ (awrt 2.67), $n=20$ and $r=\frac{2}{3}, \frac{3}{2}$ or awrt 0.7
Expressions such as $4 \times\left(\frac{2}{3}\right)^{19}, \frac{8}{3} \times\left(\frac{2}{3}\right)^{18}$ and $\frac{2^{n+1}}{3^{n-1}} \rightarrow \frac{2^{21}}{3^{19}}$ are correct and sufficient for M1
A1 Accept any of $0.0018,0.00180,1.80 \times 10^{-3}$ or 1.8×10^{-3}
(c)

M1 Uses the correct sum formula $S=\frac{a\left(r^{n}-1\right)}{(r-1)}$ or $S=\frac{a\left(1-r^{n}\right)}{(1-r)}$ with $a=4, r=\frac{2}{3}, \frac{3}{2}$ or awrt $0.7, n=16$
Condone the sum formula $S=\frac{a\left(r^{n}-1\right)}{(r-1)}$ or $S=\frac{a\left(1-r^{n}\right)}{(1-r)}$ with $a=\frac{8}{3}(\operatorname{awrt} 2.67), r=\frac{2}{3}, \frac{3}{2}$ or awrt $0.7, n=16$
dM1 Dependent upon the previous M mark. Score for an attempt at finding $12-\sum_{i=1}^{16} u_{i}$
A1 awrt 0.0183
Note: Some candidates may list all 16 terms which is acceptable provided the answer is accurate
(d)

B1 Need a reason + a minimal conclusion. Eg The sum to infinity $=12$ and sum is less than 12
Allow sum to infinity is 12 , hence true.

Question Number	Scheme	Marks
5(i) (a)	$\left(U_{2}\right)=\frac{4}{4-3}=4$	B1
(b)	$\sum_{n=1}^{100} U_{n}=100 \times 4=400$	(1) M1A1 (2)
5(ii)	$\begin{aligned} & \sum_{r=1}^{n}(100-3 r)<0 \Rightarrow 97+94+91+\ldots(100-3 r)<0 \\ & \begin{aligned} \sum \text { AP with } a=97, d=-3, n=n, S<0 & \Rightarrow 0=\frac{n}{2}(2 \times 97+(n-1) \times-3)<0 \\ & \Rightarrow \frac{n}{2}(197-3 n)<0 \Rightarrow n>65 . \dot{6} \\ & \Rightarrow n=66 \end{aligned} \end{aligned}$	M1 dM1 A1 (3) (6 marks)
$\begin{gathered} \text { (ii) } \\ \text { ALT I } \end{gathered}$	$\begin{aligned} \sum_{r=1}^{n}(100-3 r)<0 \Rightarrow & \sum_{r=1}^{n} 3 r>\sum_{r=1}^{n} 100 \\ & \Rightarrow 3 \frac{n(n+1)}{2}>100 n \\ & \Rightarrow n>65 . \dot{6} \Rightarrow n=66 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1A1 } \end{aligned}$

(i)(a)

B1 States that U_{2} is 4 . Accept $\frac{4}{1}$ but not $\frac{4}{4-3}$ and remember to isw.
Note that $U_{1}=4$ so be sure that you don't award this B1
(i)(b)

M1 Uses the method that $\sum_{n=1}^{100} U_{n}=k \times 4$ where $k=100$ or 99
You may see the AP formula being used which is fine as long as $a=4, d=0$ and $n=99$ / 100 Look for expression of the form $\frac{100}{2}\{2 \times 4+99 \times 0\}$ OR $\frac{100}{2}\{4+4\}$
A1 400

Question	Scheme	Marks
(a)	$\begin{aligned} & u_{2}=24, u_{3}=16 \text { and } u_{4}=\frac{32}{3} \\ & \quad r=\frac{2}{3} \end{aligned}$	M1, A1 [2]
(b)		B1 [1]
(c)	$u_{11}=a r^{10}=36 \times(r)^{10}$	M1
	$u_{11}=a r^{10}=36 \times\left(\frac{2}{3}\right)^{10}=\left(\frac{4096}{6561}\right)$	
	$=0.6243$	A1
(d)	$\begin{gathered} \sum_{i=1}^{6} u_{i}=\frac{36\left(1-\left(\frac{2}{3}\right)^{6}\right)}{1-\frac{2}{3}} \\ \text { or } \sum_{i=1}^{6} u_{i}=36+24+16+\frac{32}{3}+u_{5}+u_{6} \\ =98 \frac{14}{27} \end{gathered}$	[2]
		M1
		A1cao [2]
(e)	$\sum_{i=1}^{\infty} u_{i}=\frac{36}{1-\frac{2}{3}}=108$	M1 A1
		9 marks
	Notes	
(a)		
M1: Attempt to use formula correctly at least twice. It may be seen for example in u_{3} and u_{4}		
A1: All three correct exact simplified answers. Allow 10.6		
(b)		
B1: Accept $\frac{2}{3}$ or equivalent such as $\frac{24}{36}$ Allow awrt 0.667		
(c)		
M1: Uses $u_{11}=a r^{10}=36 \times(r)^{10}$ with their r		
A1: Accept awrt 0.6243 or $\frac{4096}{6561}$		
(d)		
M1: Uses correct sum formula with $a=36$ and their r or alternatively for adding their first six terms. FYI Sight of $36,24,16,10.7,7.1,4.7$ followed by 98.5 implies this mark. (You may only see the first 4 terms in part a)		
A1: Obtains $=98 \frac{14}{27}$ (must be exact). For information $\frac{}{27}=98 \frac{14}{27}$ Allow $98 . \dot{5} 1 \dot{8}$ (e)		
M1: Uses correct sum to infinity formula with $a=36$ and either $r=\frac{2}{3}$ or their r as long as $\|r\|<1$		

Question Number	Scheme		Marks
4 (a)	$\begin{aligned} & S_{9}=54 \\ & \Rightarrow 54= \frac{9}{2}(2 a+8 d) \\ & \text { or } \\ & \Rightarrow 54= \frac{9}{2}(a+a+8 d) \end{aligned}$	Uses a correct sum formula with $n=9$ and $S_{9}=54$	M1
	$\Rightarrow a+4 d=6$ *	cso	A1*
	Listing:		
	$\begin{aligned} & a+a+d+a+2 d+\ldots .+a+8 d=54 \\ & \quad \Rightarrow 9 a+36 d=54 \end{aligned}$ Scores M1 for attempting to sum 9 terms (both lines needed) or $a+a+d+a+2 d+a+3 d+a+4 d+a+5 d+a+6 d+a+7 d+a+8 d=54$ Scores M1 on its own and then A1 if they complete correctly.		
			(2)
(b)	$\begin{gathered} a+7 d=\frac{1}{2}(a+6 d) \\ \text { or } \\ \frac{1}{2}(a+7 d)=a+6 d \end{gathered}$	Uses $t_{8}=\frac{1}{2} t_{7}$ or $\frac{1}{2} t_{8}=t_{7}$ to produce one of these equations.	M1
	$\begin{gathered} \Rightarrow 6-4 d+7 d=\frac{1}{2}(6-4 d+6 d) \\ \Rightarrow d=\ldots \end{gathered}$	Uses the given equation from (a) and their second linear equation in a and d and proceeds to find a value for either a or d.	M1
	$\Rightarrow d=-1.5, a=12$	A1: Either $d=-1.5(\mathrm{oe})$ or $a=12$	A1A1
		A1: Both $d=-1.5(\mathrm{oe})$ and $a=12$	
	Note that use of $\frac{1}{2} t_{8}=t_{7}$ in (b) gives $a=30$ and $d=-6$		
			(4)
			(6 marks)

Notes

(a) Mark parts (a) and (b) together

B1: Correct statement (needs all three terms)- this may be omitted and implied by correct statement in k only, as candidates may use geometric mean, or may use ratio of terms being equal and give a correct line 2 without line 1 . (This would earn the B1M1 immediately)
M1: Valid Attempt to eliminate a and r and to obtain equation in k only
M1: Correct expansion of $(5 k-7)^{2}=25 k^{2}-70 k+49$ - may have four terms $(5 k-7)^{2}=25 k^{2}-35 k-35 k+49$
A1cso: No incorrect work seen. The printed answer is obtained including " $=0$ ".
(b) M1: Attempt to solve quadratic by usual methods (factorisation, completion of square or formula - see notes at start of mark scheme) or see $9 / 11$ substituted and given as " $=0$ " for M1A0
A1*: 9/11 only and 11 should be seen and rejected. Accept $9 / 11$ underlined or $k=9 / 11$ written on following line.
Alternatively $(k-11)$ may be seen in the factorisation and a statement ' k not integer' given with $k=9 / 11$ stated.
(c) Mark parts (i) and (ii) together

B1: $a=\frac{8}{11}$ or any equivalent (If not stated explicitly or used in formula may be implied by correct answer to (ii))
B1:Substitutes $k=9 / 11$ completely and obtain $r=-4$ (If not stated explicitly, may be implied by correct answer to (i) or (ii))
(i) M1: Use of correct formula with $n=4 a$ and/or r may still be in terms of k or uses $(2 k+10) \times r$. May assume $r=k$.

A1: Correct exact answer
(ii) M1: Use of correct formula with $n=10 a$ and/or r may still be in terms of k May assume $r=k \quad$ A1 : -152520 cao

NB Correct formula with negative sign in numerator followed by the incorrect $(8 / 11)\left(1+4^{10}\right) /(1-(-4))$ usually found equal to 152520.2909 with no negative sign can be allowed M1A0 but if the incorrect numerical expression appears on its own with no formula then M0A0
Listing terms can get: B1 (first term) B1 M1A1 (implied by correct $4^{\text {th }}$ term) M1A1 (implied by -152520)

Question Number	Scheme	Marks
5.(i) (a) (Way 1) (b)	Mark (a) and (b) together $a+a r=34$ or $\frac{a\left(1-r^{2}\right)}{(1-r)}=34$ or $\frac{a\left(r^{2}-1\right)}{(r-1)}=34 ; \quad \frac{a}{1-r}=162$ Eliminate a to give $(1+r)(1-r)=\frac{17}{81} \quad$ or $\quad 1-r^{2}=\frac{34}{162} . \quad \quad$ (not a cubic) (and so $r^{2}=\frac{64}{81}$ and) $r=\frac{8}{9}$ only Substitute their $r=\frac{8}{9}(0<r<1)$ to give $a=$ $a=18$	$\begin{aligned} & \mathrm{B} 1 ; \mathrm{B} 1 \\ & \mathrm{aM} 1 \end{aligned}$ aA1 (4) bM1 bA1 (2)
(Way 2) Part (b) first Then part (a) again	Eliminate r to give $\frac{34-a}{a}=1-\frac{a}{162}$ gives $\quad a=18$ or 306 and rejects 306 to give $a=18$ Substitute $\mathrm{a}=18$ to give $r=$ $r=\frac{8}{9}$	bM1 bA1 aM1 aA1
(ii)	$\frac{42\left(1-\frac{6^{n}}{7}\right)}{1-\frac{6}{7}}>290$ (For trial and improvement approach see notes below) to obtain So $\left(\frac{6}{7}\right)^{n}<\left(\frac{4}{294}\right)$ or equivalent e.g. $\left(\frac{7}{6}\right)^{n}>\left(\frac{294}{4}\right)$ or $\left(\frac{6}{7}\right)^{n}<\left(\frac{2}{147}\right)$ So $n>\frac{\log "\left(\frac{4}{294}\right) "}{\log \left(\frac{6}{7}\right)}$ or $\log _{\frac{6}{7}}$ " $\left(\frac{4}{294}\right)$ " or equivalent but must be \log of positive quantity (i.e. $n>27.9$) so $n=28$	M1 A1 M1 A1 (4)

Notes

(i) (a) B1: Writes a correct equation connecting a and r and 34 (allow equivalent equations - may be implied)

B1: Writes a correct equation connecting a and r and 162 (allow equivalent equation - may be implied)
Way 1: aM1: Eliminates a correctly for these two equations to give $(1+r)(1-r)=\frac{17}{81}$ or $(1+r)(1-r)=\frac{34}{162}$ or equivalent not a cubic - should have factorized $(1-r)$ to give a correct quadratic
aA1: Correct value for r. Accept 0.8 recurring or $8 / 9$ (not 0.889) Must only have positive value.
bM1: Substitutes their $r(0<r<1)$ into a correct formula to give value for a. Can be implied by $a=18$
bA1: must be 18 (not answers which round to 18)
Way 2: Finds \boldsymbol{a} first - B1, B1: As before then award the (b) M and A marks before the (a) M and A marks
bM1: Eliminates r correctly to give $\frac{34-a}{a}=1-\frac{a}{162}$ or $a^{2}-324 a+5508=0$ or equivalent
bA1: Correct value for a so $a=18$ only. (Only award after 306 has been rejected)
aM1: Substitutes their 18 to give $r=$
aA1: $r=\frac{8}{9}$ only
(ii) M1: Allow n or $n-1$ and any symbols from " $>", "<"$, or " $="$ etc A1: Must be power $n(\operatorname{not} n-1)$ with any symbol M1: Uses logs correctly on $\left(\frac{6}{7}\right)^{n}$ or $\left(\frac{7}{6}\right)^{n}$ not on (36) ${ }^{n}$ to get as far as n Allow any symbol
A1: $n=28$ cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the negative $\log \left(\frac{6}{7}\right)$ or any contradictory statements must be penalised here) Those with equals throughout may gain this mark if they follow 27.9 by $n=28$. Just $n=28$ without mention of 27.9 is only allowed following correct inequality work.
Special case: Trial and improvement: Gives $n=28$ as $S=$ awrt 290.1 (M1A1)and when $n=27 S=($ awrt) 289 so $n=28$ (M1A1) - $\quad n=28$ with no working is M1A0M0A0 and insufficient accuracy is M1A0M1A0

Uses nth term instead of sum of n terms - over simplified - do not treat as misread - award 0/4

Question Number	Scheme		Marks
6(a)		M1: Use of a correct S_{∞} formula	M1A1
	$1-\frac{7}{8}$	A1: 160	
	Accept correct answer only (160)		
			[2]
(b)	$S_{12}=\frac{20\left(1-\left(\frac{7}{8}\right)^{12}\right)}{1-\frac{1}{8}} \cdot=127.77324$	M1: Use of a correct S_{n} formula with $n=12$ (condone missing brackets around 7/8)	M1A1
		A1: awrt 127.8	
	T \& I in (b) requires all 12 terms to be calculated correctly for M1 and A1 for awrt 127.8		
			[2]
(c)	$160-\frac{20\left(1-\left(\frac{7}{8}\right)^{N}\right)}{1-\frac{7}{8}}<0.5$	Applies S_{N} (GP only) with $a=20, r=\frac{7}{8}$ and "uses" 0.5 and their S_{∞} at any point in their working. (condone missing brackets around $7 / 8$)(Allow $=,<,>, \geq, \leq)$ but see note below.	M1
	$160\left(\frac{7}{8}\right)^{N}<(0.5)$ or $\left(\frac{7}{8}\right)^{N}<\left(\frac{0.5}{160}\right)$	Attempt to isolate $+160\left(\frac{7}{8}\right)^{N}$ or $+\left(\frac{7}{8}\right)^{N}$ oe (Allow $=,<,>, \geq, \leq$) but see note below. Dependent on the previous M1	dM1
	$N \log \left(\frac{7}{8}\right)<\log \left(\frac{0.5}{160}\right)$	Uses the power law of logarithms or takes logs base 0.875 correctly to obtain an equation or an inequality of the form $N \log \left(\frac{7}{8}\right)<\log \left(\frac{0.5}{\text { their } \mathrm{S}_{\infty}}\right)$ or $N>\log _{0.875}\left(\frac{0.5}{\text { their } \mathrm{S}_{\infty}}\right)$ (Allow $=,<,>, \geq, \leq$) but see note below.	M1
	$N>\frac{\log \left(\frac{0.5}{160}\right)}{\log \left(\frac{7}{8}\right)}=43.19823 \ldots \Rightarrow N=44$	$N=44$ (Allow $N \geq 44$ but not $N>44$	A1 cso
	An incorrect inequality statement at any stage in a candidate's working loses the final mark. Some candidates do not realise that the direction of the inequality is reversed in the final line of their solution. BUT it is possible to gain full marks for using $=$, as long as no incorrect working seen.		
			[4]
			Total 8
	Trial \& Improvement Method in (c):		
	$1^{\text {st }} \mathrm{M} 1$: Attempts $160-S_{N}$ or S_{N} with at least one value for $N>40$		
	$2^{\text {nd }}$ M1: Attempts $160-S_{N}$ or S_{N} with $N=43$ or $N=44$		
	$3^{\text {rd }} \mathrm{M} 1$: For evidence of examining $160-S_{N}$ or S_{N} for both $N=43$ and $N=44$ with both values correct to 2 DP Eg: $160-S_{43}=$ awrt 0.51 and $160-S_{44}=$ awrt 0.45 or $S_{43}=\operatorname{awrt159.49}$ and $S_{44}=\operatorname{awrt159.55}$		
	A1: $N=44$ cso		
	Answer of $N=44$ only with no working scores no marks		

