

A-LEVEL MATHEMATICS 7357/1

Paper 1

Mark scheme

June 2018

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aga.org.uk

Mark scheme instructions to examiners

General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- marking instructions that indicate when marks should be awarded or withheld including the principle on which each mark is awarded. Information is included to help the examiner make his or her judgement and to delineate what is creditworthy from that not worthy of credit
- a typical solution. This response is one we expect to see frequently. However credit must be given on the basis of the marking instructions.

If a student uses a method which is not explicitly covered by the marking instructions the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Key to mark types

M	mark is for method
R	mark is for reasoning
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
F	follow through from previous incorrect result

Key to mark scheme abbreviations

CAO	correct answer only
CSO	correct solution only
ft	follow through from previous incorrect result
'their'	Indicates that credit can be given from previous incorrect result
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
sf	significant figure(s)
dp	decimal place(s)

AS/A-level Maths/Further Maths assessment objectives

Α	0	Description			
	AO1.1a	Select routine procedures			
AO1	AO1.1b	Correctly carry out routine procedures			
	AO1.2	Accurately recall facts, terminology and definitions			
	AO2.1	Construct rigorous mathematical arguments (including proofs)			
	AO2.2a	Make deductions			
AO2	AO2.2b	Make inferences			
	AO2.3	Assess the validity of mathematical arguments			
	AO2.4	Explain their reasoning			
	AO2.5	Use mathematical language and notation correctly			
	AO3.1a	Translate problems in mathematical contexts into mathematical processes			
	AO3.1b	Translate problems in non-mathematical contexts into mathematical processes			
	AO3.2a	Interpret solutions to problems in their original context			
	AO3.2b	Where appropriate, evaluate the accuracy and limitations of solutions to problems			
AO3	AO3.3	Translate situations in context into mathematical models			
	AO3.4	Use mathematical models			
	AO3.5a	Evaluate the outcomes of modelling in context			
	AO3.5b	Recognise the limitations of models			
	AO3.5c	Where appropriate, explain how to refine models			

Examiners should consistently apply the following general marking principles

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to students showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the student to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Work erased or crossed out

Erased or crossed out work that is still legible and has not been replaced should be marked. Erased or crossed out work that has been replaced can be ignored.

Choice

When a choice of answers and/or methods is given and the student has not clearly indicated which answer they want to be marked, mark positively, awarding marks for all of the student's best attempts. Withhold marks for final accuracy and conclusions if there are conflicting complete answers or when an incorrect solution (or part thereof) is referred to in the final answer.

Q1	Marking Instructions	AO	Marks	Typical Solution
1	Circles correct answer	AO1.1b	B1	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{x^3}$
	Total		1	

Q2	Marking Instructions	AO	Marks	Typical Solution
2	Circles correct answer	AO1.1b	B1	$y = 5 \times 5^x$
	Total		1	

Q	Marking Instructions	AO	Marks	Typical Solution
3	Circles correct answer	AO1.1b	B1	4
	Total		1	

Q	Marking Instructions	AO	Marks	Typical Solution
4	Takes logs of an equation. Must be correct use of logs.	AO1.1a	M1	$y = e^{x-4}$
	Obtains correct inverse function in any correct form	AO1.1b	A1	$ \ln y = x - 4 $ $ 4 + \ln y = x $
	Deduces correct domain	AO2.2a	B1	$f^{-1}(x) = 4 + \ln x, x > 0$
	Total		3	

	Q	Marking Instructions	AO	Marks	Typical Solution
$\frac{\pm A \ln 2 \times 2^{2it}}{\text{Obtains}} \frac{\frac{dy}{dt} = (\pm A \ln 2)2^t \text{ and}}{\frac{dx}{dt}} = (\pm A \ln 2)2^t \text{ and}} $ $\frac{\frac{dx}{dt}}{\frac{dx}{dt}} = (\pm B \ln 2)2^{-t}$ Uses chain rule with correct $\frac{dy}{dt}$ and $\frac{dx}{dt}$ and completes rigorous argument to obtain fully correct printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y Or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ALT $\frac{dy}{dt} = (3 \ln 2)2^t$ $\frac{1}{2^t} = \frac{3}{4} \times 2^{2t}$ $2^{-t} = \frac{x-3}{3}$ $1 = \left(\frac{y+5}{3}\right)\left(\frac{x-3}{4}\right)$ $12 = xy + 5x - 3y - 15$ $xy + 5x - 3y = 27$ ALT $\frac{1}{xy + 6x + (y + (4 \times 2^t + 3)(5 \times 2^t - 5) + 6(4 \times 2^t + 3) + 6(5 \times 2^t - 5)}{a = 5, b = -3}$ $\frac{1}{xy + 5x - 3y = -3 + 15 + 15}$					- Jprom Cordinary
Obtains $\frac{dy}{dt} = (\pm A \ln 2) 2^t$ and $\frac{dx}{dt} = (\pm B \ln 2) 2^{-t}$ Uses chain rule with correct $\frac{dy}{dt}$ and $\frac{dx}{dt}$ and completes rigorous argument to obtain fully correct printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y or Writes given expression in terms of t Eliminates t or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain equation in the required form ISW AO3.1a M1 $2^t = \frac{y+5}{3}$ $2^{-t} = \frac{x-3}{4}$ $1 = \left(\frac{y+5}{3}\right)\left(\frac{x-3}{4}\right)$ $12 = xy + 5x - 3y - 15$ $xy + 5x - 3y = 27$					
Obtains $\frac{3y}{dt} = (\pm A \ln 2) 2^t$ and $\frac{dx}{dt} = (\pm B \ln 2) 2^{-t}$ Uses chain rule with correct $\frac{dy}{dt}$ and $\frac{dx}{dt}$ and completes rigorous argument to obtain fully correct printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ALT $\frac{dy}{dx} = (3 \ln 2) 2^t$ $\frac{dx}{dt} = (-4 \ln 2) 2^{-t}$ $\frac{dy}{dx} = (3 \ln 2) 2^t$ $\frac{dy}{dx} = (3$			AO1.1b	A1	dv
$\frac{dx}{dt} = (\pm B \ln 2) 2^{-t}$ Uses chain rule with correct $\frac{dy}{dt}$ and $\frac{dx}{dt}$ and completes rigorous argument to obtain fully correct printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^{t} in terms of y Or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW AC2.1 R1 $\frac{dx}{dt} = (-4 \ln 2) 2^{-t}$ $\frac{dy}{dx} = \frac{(3 \ln 2) 2^{t}}{(-4 \ln 2) 2^{-t}}$ $= -\frac{3}{4} \times 2^{2t}$ $2^{t} = \frac{x-3}{3}$ $2^{-t} = \frac{x-3}{4}$ $1 = \left(\frac{y+5}{3}\right) \left(\frac{x-3}{4}\right)$ $12 = xy + 5x - 3y - 15$ $xy + 5x - 3y = 27$ ALT $xy + ax + by = (4x + 2^{t} + 3)(5x + 2^{t} + 3) + b(3x + 2^{t} - 5)$ $a = 5x - 3$ $a = 5x - 3 + 3 + 15 + 15$ $a = 5x - 3$ $a = 5x - 3 + 3 + 15 + 15$ $a = 5x - 3$		Obtains $\frac{dy}{dt} = (\pm A \ln 2) 2^t$ and			$\frac{dy}{dt} = (3 \ln 2) 2^t$
Uses chain rule with correct $\frac{dy}{dt}$ and $\frac{dx}{dt}$ and completes rigorous argument to obtain fully correct printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW AO2.1 R1					dr
Uses chain rule with correct $\frac{dy}{dt}$ and $\frac{dx}{dt}$ and completes rigorous argument to obtain fully correct printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW AO2.1 R1		$\frac{dx}{dt} = (\pm B \ln 2) 2^{-t}$			$\frac{dt}{dt} = (-4 \ln 2) 2^{-t}$
Uses chain rule with correct $\frac{3y}{dt}$ and $\frac{dx}{dt}$ and completes rigorous argument to obtain fully correct printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y Or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ACCOMPART AND ACCOMPAR		1	A∩2 1	R1	dt (21, 2) 2/
and $\frac{dx}{dt}$ and completes rigorous argument to obtain fully correct printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y Or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ALT		Uses chain rule with correct $\frac{dy}{dx}$	702.1	IXI	$\frac{dy}{dy} = \frac{(3 \ln 2)2^{2}}{(3 \ln 2)}$
argument to obtain fully correct printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y Or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ACO 1.1a AOO 1.1a M1 $1 = \left(\frac{y+5}{3}\right)\left(\frac{x-3}{4}\right)$ $12 = xy + 5x - 3y - 15$ $xy + 5x - 3y = 27$ ALT $xy + ax + by = (4x2^x + 3)(3x2^x - 5) + a(4x2^x + 3) + b(3x2^x - 5)$ $= 12 - 15 + (4a - 20)2^x + (3b - 9)2^x + 3a - 5b$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$		dt			$dx = (-4 \ln 2) 2^{-t}$
argument to obtain fully correct printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y Or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ACO 1.1a AOO 1.1a M1 $1 = \left(\frac{y+5}{3}\right)\left(\frac{x-3}{4}\right)$ $12 = xy + 5x - 3y - 15$ $xy + 5x - 3y = 27$ ALT $xy + ax + by = (4x2^x + 3)(3x2^x - 5) + a(4x2^x + 3) + b(3x2^x - 5)$ $= 12 - 15 + (4a - 20)2^x + (3b - 9)2^x + 3a - 5b$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$		and $\frac{dx}{dx}$ and completes rigorous			3 22t
printed answer (b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y or Writes given expression in terms of t Eliminates t or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW AO2.1 AO2.1 R1 AO3.1a M1 $2^t = \frac{y+5}{3}$ $2^{-t} = \frac{x-3}{4}$ $1 = \left(\frac{y+5}{3}\right)\left(\frac{x-3}{4}\right)$ $12 = xy + 5x - 3y - 15$ $xy + 5x - 3y = 27$ ALT $xy + 6x + by = (4 \times 2^t + 3)(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5)}$ $a = 5, b = -3$ $xy + 5x - 3y = 3$ $a = 12 - 15 \cdot (4a - 20)2^t + (3a + 9)2^t + 3a - 5b$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$		GC .			$=-\frac{1}{4}\times 2$
(b) Rearranges to write 2^{-t} in terms of x or 2^t in terms of y or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW AU1. AU2. $1 = \frac{y+5}{3}$ $1 = \left(\frac{y+5}{3}\right)\left(\frac{x-3}{4}\right)$ $12 = xy + 5x - 3y - 15$ $xy + 5x - 3y = 27$ ALT $xy + ax + by = (4x2^{-t} + 3)(3x2^{-t} - 5) + a(4x2^{-t} + 3) + b(3x2^{-t} - 5)}$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = 3 + 15 + 15$					
x or 2^t in terms of y or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW $AO2.1$ R1 $2^t = \frac{x-3}{4}$ $1 = \left(\frac{y+5}{3}\right)\left(\frac{x-3}{4}\right)$ $12 = xy + 5x - 3y - 15$ $xy + 5x - 3y = 27$ ALT $xy + ax + by = (4 \times 2^t + 3)(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5)$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$		printed anower			
x or $2'$ in terms of y Or Writes given expression in terms of t Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ALT $xy + ax + by = (4 \times 2^{-1} \times 3)(3 \times 2^{-2} + 3) + a(4 \times 2^{-1} \times 3) + b(3 \times 2^{-2} \times 5) + a(4 \times 2^{-2} \times 5) + a($	(b)	Rearranges to write 2^{-t} in terms of	AO3.1a	M1	y+5
Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ACCURATE AND ACCU		x or 2^t in terms of y			$Z \equiv {3}$
Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ACCURATE AND ACCU					x-3
Eliminates t Or Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ACCURATE AND ACCU					$2^{\circ} = {4}$
Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ALT $xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)}{a = 5, b = -3}$ $xy + 5x - 3y = 27$ ALT $xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)}{a = 5, b = -3}$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$			ΔO1 1a	M1	
Compares coefficients PI by $a=5$ or $b=-3$ Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ALT $xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)}{a = 5, b = -3}$ $xy + 5x - 3y = 27$ ALT $xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)}{a = 5, b = -3}$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$			7101.10	1411	$1 = \left(\frac{5}{3}\right)\left(\frac{1}{4}\right)$
Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ALT $xy + 5x - 3y = 27$ AD2.1 $xy + 5x - 3y = 27$ ALT $xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)}$ $= 12 - 15 + (4a - 20)2^{-t} + (3b + 9)2^{t} + 3a - 5b$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$					
Completes rigorous argument to obtain correct values of a , b and c and write the Cartesian equation in the required form ISW ALT $xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^t - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t + 3) + b(3 \times 2^t - 5) + a(4 \times 2^t - 5)$		•			
and write the Cartesian equation in the required form ISW ALT $xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)$ $= 12 - 15 + (4a - 20)2^{-t} + (3b + 9)2^{t} + 3a - 5b$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$			AO2.1	R1	$\begin{bmatrix} xy + 3x - 3y - 21 \end{bmatrix}$
in the required form ISW ALT $xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)$ $= 12 - 15 + (4a - 20)2^{-t} + (3b + 9)2^{t} + 3a - 5b$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$					
ALT $xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)$ $= 12 - 15 + (4a - 20)2^{-t} + (3b + 9)2^{t} + 3a - 5b$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$					
ALT $xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)$ $= 12 - 15 + (4a - 20)2^{-t} + (3b + 9)2^{t} + 3a - 5b$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$					
$xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)$ $= 12 - 15 + (4a - 20)2^{-t} + (3b + 9)2^{t} + 3a - 5b$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$		13 7 7			
$xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)$ $= 12 - 15 + (4a - 20)2^{-t} + (3b + 9)2^{t} + 3a - 5b$ $a = 5, b = -3$ $xy + 5x - 3y = -3 + 15 + 15$ $= 27$					
$= 12-15+(4a-20)2^{-t}+(3b+9)2^{t}+3a-5b$ $a = 5, b = -3$ $xy+5x-3y = -3+15+15$ $= 27$					ALT
$= 12-15+(4a-20)2^{-t}+(3b+9)2^{t}+3a-5b$ $a = 5, b = -3$ $xy+5x-3y = -3+15+15$ $= 27$					$xy + ax + by = (4 \times 2^{-t} + 3)(3 \times 2^{t} - 5) + a(4 \times 2^{-t} + 3) + b(3 \times 2^{t} - 5)$
xy + 5x - 3y = -3 + 15 + 15 $= 27$					$=12-15+(4a-20)2^{-t}+(3b+9)2^{t}+3a-5b$
= 27					a = 5, b = -3
i i i i i i i i i i i i i i i i i i i		Total		6	= 27

Q	Marking Instructions	AO	Marks	Typical Solution
6(a)	Writes in a form to which the	AO3.1a	M1	
O(a)	binomial expansion can be applied	7100.14	141.1	$\frac{1}{\sqrt{4+x}} = \frac{1}{2}(1+\frac{x}{4})^{-\frac{1}{2}}$
	1			
	Accept $A(1 + \frac{x}{4})^{-\frac{1}{2}}$			$\approx \frac{1}{2} \left 1 + \left(-\frac{1}{2} \right) \frac{x}{4} + \frac{\left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) \left(\frac{x}{4} \right)^2}{2!} \right $
	Uses binomial expansion for their	AO1.1a	M1	2 2 4 2!
	$(1+kx)^{\pm \frac{1}{2}}$ with at least two terms			1
	correct (can be unsimplified)			$\approx \frac{1}{2} \left[1 - \frac{x}{8} + \frac{3x^2}{128} \right]$
	Obtains correct simplified answer No need to expand brackets CAO	AO1.1b	A1	$\approx \frac{1}{2} - \frac{1}{16}x + \frac{3}{256}x^2$
(b)	Substitutes $-x^3$ in their three term expansion from part (a)	AO1.1a	M1	$\frac{1}{\sqrt{4-x^3}} \approx \frac{1}{2} - \frac{1}{16} \left(-x^3\right) + \frac{3}{256} \left(-x^3\right)^2$
	Obtains correct expansion. FT their (a)	AO1.1b	A1F	$\approx \frac{1}{2} + \frac{x^3}{16} + \frac{3x^6}{256}$
(c)	Uses their three term expansion as the integrand ignore limits PI by next mark	AO1.1a	M1	$\int_0^1 \frac{1}{\sqrt{4 - x^3}} dx \approx \int_0^1 \frac{1}{2} + \frac{x^3}{16} + \frac{3x^6}{256} dx$
	Integrates (at least two terms correct)	AO1.1a	M1	$\approx \left[\frac{x}{2} + \frac{x^4}{64} + \frac{3x^7}{1792}\right]_0^1$
	Obtains correct value	AO1.1b	A1	$\begin{bmatrix} 2 & 64 & 1792 \end{bmatrix}_0$
	CAO			$\approx \frac{1}{2} + \frac{1}{64} + \frac{3}{1792}$
				2 64 1792
				≈0.5172991
(d)(i)	Explains that each term in the expansion is positive	AO2.4	E1	Each term in the expansion is positive.
	Deduces that increasing the	AO2.2a	R1	positive.
	number of terms will increase the			So increasing the terms will
	estimated value and that the value			increase the estimated value hence
	must be an underestimate.			the value must be an underestimate.
	(Condone inference if evidence given ie value calculated			underestimate.
	numerically and compared)			
(d)(ii)	States the validity of their binomial	AO3.1a	B1F	The binomial expansion is valid for
	expansion for part (b) Provided their $k \neq \pm 1$			$ x < \sqrt[3]{4}$
	Compares integral lower limit with validity of correct expansion CAO	AO2.3	E1	$2 > \sqrt[3]{4}$
	Total		12	

Q	Marking Instructions	AO	Marks	Typical Solution
7(a)	Uses a technique which could lead to showing two lines are perpendicular. Obtains at least one correct distance (or distance ²) or gradient.	AO3.1a	M1	$AB^{2} = (8-15)^{2} + (17-10)^{2}$ $= 98$ $AC^{2} = (8-2)^{2} + (17-7)^{2}$ $= 676$
	Obtains three correct distances (or distance²) or two gradients. Lengths: $7\sqrt{2},17\sqrt{2},26$ $AB = -\frac{7}{7},BC = \frac{17}{17}$ Gradients:	AO1.1b	A1	$CB^{2} = (152)^{2} + (107)^{2}$ $= 578$ $AB^{2} + BC^{2} = 98 + 578$ $= 676$ $= AC^{2}$
	Completes correct rigorous argument to show required result Uses Pythagoras OR Multiplies gradients to show product is -1 AND Writes a concluding statement.	AO2.1	R1	Angle ABC is a right angle.
(b)(i)	Explains why AC is a diameter Must reference angle subtended by diameter (condone "angle in a semi-circle") or give full explanation.	AO2.4	E1	The angle subtended by a diameter is 90° .: AC must be a diameter of the circle
(b)(ii)	Deduces correct radius (or radius ²)	AO2.2a	B1	$\sqrt{676}$
	Obtains mid-point of diameter	AO1.1b	B1	Radius $\frac{\sqrt{676}}{2} = 13$
	Uses $D(-8,-2)$ to find the distance or (distance ²) from <i>their</i> centre OE	AO1.1a	M1	Centre $\left(\frac{8-2}{2}, \frac{17-7}{2}\right) = (3,5)$
	Completes rigorous argument by	AO2.1	R1	
	comparing $\sqrt{170} > 13$ (or			Distance from centre to D
	170 > 169) to show that D lies			$(38)^2 + (52)^2 = 11^2 + 7^2$
	outside the circle			=170 > 169
				So D lies outside the circle.
	Total		8	

Q	Marking Instructions	AO	Marks	Typical Solution
8(a)	Uses $A = \frac{1}{2}ab\sin C$ for triangle OAC or OAB	AO1.2	B1	$\frac{1}{2}r \times \frac{r}{2}\sin\theta = \frac{1}{4}\left(\frac{1}{2}r^2\theta\right)$
	PI by equation Forms an equation relating the area of OAC and ABC in the form $Ar^2 \sin \theta = Br^2 \theta$	AO3.1a	M1	$\Rightarrow \frac{r^2}{4}\sin\theta = \frac{1}{8}r^2\theta$ $\Rightarrow 2r^2\sin\theta = r^2\theta$ $\Rightarrow 2\sin\theta = \theta$
	Obtains fully correct equation ACF	AO1.1b	A1	AG
	Simplifies to obtain required equation, only award if all working correct with rigorous argument.	AO2.1	R1	A6
(b)	Rearranges to the form $f(\theta) = 0$ PI by correct θ_2 or θ_3	AO1.1a	M1	$f(\theta) = \theta - 2\sin\theta = 0$ $\theta_n - 2\sin\theta_n$
	Differentiates their $f(\theta)$ or uses calculator PI correct θ_2 or θ_3	AO1.1b	A1	$\theta_{n+1} = \theta_n - \frac{\theta_n - 2\sin\theta_n}{1 - 2\cos\theta_n}$ $\theta_2 = 2.094395$
	Obtains correct θ_3	AO1.1b	A1	$\theta_3 = 1.913222$ $\theta_3 = 1.91322 (5 \text{ d.p.})$
(c)	Obtains percentage error for θ_3 AWRT 0.94%	AO3.2b	B1	0.935%
	Total		8	

Q	Marking Instructions	AO	Marks	Typical Solution
9(a)	Uses S_n for arithmetic sequence with $n = 6$ or $n = 36$	AO1.1a	M1	$S_6 = 3(2a+5d)$ $= 6a+15d$
	Finds correct expressions for S_6 and S_{36}	AO1.1b	A1	$S_{36} = 18(2a + 35d)$
	Forms equation in a and d using their S_{36} = $(their S_6)^2$	AO3.1a	M1	=36a+630d
	Expands quadratic and collects like terms to obtain printed answer Only award for completely correct solution with no errors	AO2.1	R1	$36a+630d = (6a+15d)^{2}$ $36a+630d = 36a^{2}+90ad+90ad+225d^{2}$ $4a+70d = 4a^{2}+20ad+25d^{2}$
(b)	Uses u_n for arithmetic sequence with $n = 6$	AO1.1b	B1	$a+5d=25 \Rightarrow d=\frac{25-a}{5}$
	Eliminates a or d using their 'a+5d = 25' and the printed result in part (a) to obtain a quadratic in one variable	AO1.1a	M1	$4a + 70\left(\frac{25 - a}{5}\right) = 4a^2 + 20a\left(\frac{25 - a}{5}\right) + 25\left(\frac{25 - a}{5}\right)^2$ $4a + 350 - 14a = 4a^2 + 100a - 4a^2 + 625 - 50a + a^2$
	Obtains correct quadratic equation Need not be simplified	AO1.1b	A1	$350-10a=100a+625-50a+a^2$
	Solves their quadratic $a = -5$, $a = -55$ (or $d = 6$, $d = 16$)	AO1.1a	M1	$a^2+60a+275=0$
	Deduces min value a =-55 NMS a =-55 5/5	AO3.2a	A1	a = -5, a = -55 (or d = 6, d = 16) a = -55
	Total		9	

Q	Marking Instructions	AO	Marks	Typical Solution
10(a)	Uses model to form an equation to			, promote the control of the control
` '	find k with $t=5.7$, $m = \frac{1}{2} m_0$	AO3.4	M1	$200 = 400e^{-kx} ^{5.7}$
	Obtains correct value of k	AO1.1b	A1	
	Uses model to find m			<i>k</i> =0.1216047
	with t =4, m_0 =400 and their k	AO3.4	M1	
	(Condone m_0 =200)			$m = 400 \text{ e}^{-0.1216 \times 4}$
	Obtains correct value of <i>m</i>			
	CAO	AO1.1b	A1	m = 250
	(245.9296)			
4.	AWRT 250			
(b)	Uses model to set up inequality or	AO3.1b	M1	$400e^{-0.1216t} \le 280$
	equation using <i>their k</i> and 280			$e^{-0.1216t} \le 0.7$
	Solves their inequality or equation			
	to find t	AO1.1b	A1F	$-0.1216t \le \ln\left(0.7\right)$
	(Follow through their k only)	AO1.1b	AIF	$t \ge 2.933$
	(2.933067)			V = 2.555
	Interprets <i>their</i> solution			-
	(Only follow through if time is	AO3.2a	A1F	10:56 am
	earlier than 1:42 pm)			
(c)	States any sensible reason such			
	as:			Different people eliminate caffeine
	Different people eliminate caffeine			at different rates
	at different rates			
	The model is based on an average			
	The model is based on an average person			
	person	AO3.5b	B1	
	The length of time taken to drink			
	two cups of coffee may have been			
	significant			
	The amount of caffeine in a "strong			
	cup of coffee" may vary			
	Total		8	

Q	Marking Instructions	AO	Marks	Typical Solution
11(a)(i)	Uses model to form equation	AO3.4	M1	$\therefore 10 + 100 \left(\frac{T}{30}\right)^3 - 50 \left(\frac{T}{30}\right)^4 = 0$
	with $V=0$ Rearranges to isolate T^4 term	AO1.1a	M1	$\frac{1}{30} = 0$
	Completes rigorous and convincing argument to clearly show the required result. Need to see evidence of division by T to isolate T^3 term Must be an equation throughout	AO2.1	R1	$\Rightarrow 50\left(\frac{T}{30}\right)^4 = 10 + 100\left(\frac{T}{30}\right)^3$ $\Rightarrow \frac{T^4}{16200} = 10 + \frac{T^3}{270}$ $\Rightarrow \frac{T^3}{16200} = \frac{10}{T} + \frac{T^2}{270}$ $\Rightarrow T = \sqrt[3]{\frac{162000}{T} + 60T^2}$
11(a)(ii)	Calculates T_1 (44.96345)	AO1.1a	M1	T ₁ =44.963
	Calculates T_2 and T_3 (49.98742) Condone greater than 3dp (53.50407)	AO1.1b	A1	$T_2 = 49.987$ $T_3 = 53.504$
11(a)(iii)	Explains 38 in context	AO3.2a	B1	38 represents current year 2018
11(b)	Translates 2029 into t=49	AO3.3	B1	$10+100\left(\frac{t}{30}\right)^3-50\left(\frac{t}{30}\right)^4=4.5\times1.063^t$
	Uses models to set up equation or evaluate both models at one value of t	AO3.4	M1	$\Rightarrow t = 49.009$
	Obtains correct values for both models for two appropriate values of t . $t \in [49, 50]$ eg t =49 and t =50 t =49 gives: 89.89 and 89.81 t =50 gives: 87.16 and 95.47 Or Solves equation using any method to obtain AWFW 49.009 to 49.01	AO1.1b	A1	Therefore use of oil and production of oil will be equal in the year 2029
	Explains that the use of oil and the production of oil are equal when $t = 49.009$ Or Uses a change of sign argument OE to explain that the value of each model for two appropriate values of t shows that the production of oil and the use of oil are the same for $t \in (49,50)$	AO2.4	E1	

Q	Marking Instructions	AO	Marks	Typical Solution
12(a)	Begins a proof using a valid	AO1.1a	M1	
	method			$p\left(-\frac{1}{2}\right) = 30 \times \left(-\frac{1}{2}\right)^3 - 7\left(-\frac{1}{2}\right)^2 - 7\left(-\frac{1}{2}\right) + 2$
	Eg. Factor theorem, algebraic			
	division, multiplication of correct			= 0
	factors			$\therefore 2x+1$ is a factor of $p(x)$
	Constructs rigorous mathematical proof.	AO2.1	R1	r (")
	To achieve this mark:			
	Factor theorem			
	the student must clearly substitute			
	and state that $p(-1/2)=0$ and clearly			
	state that this implies that $2x + 1$ is			
	a factor			
	Algebraic division OR			
	Multiplication of correct factors			
	The method must be completely			
	correct with a concluding statement			
(b)	Obtains quadratic factor PI	AO1.1a	M1	$p(x) = (2x+1)(15x^2 - 11x + 2)$
` '	Obtains second linear factor	AO1.1b	A1	
	Writes $p(x)$ as the product of the	AO1.1b	A1	= (2x+1)(5x-2)(3x-1)
	correct three linear factors.			
	NMS correct answer 3/3			
(c)	Rearranges to achieve a cubic	AO3.1a	M1	$\frac{30\sec^2 x + 2\cos x}{7} = \sec x + 1$
	equation in $\sec x$ (or $\cos x$)			$= \sec x + 1$
	Equates to zero and uses result	AO1.1a	M1	$\Rightarrow 30\sec^2 x + 2\cos x = 7\sec x + 7$
	from (b) or factorises	1000	A 4	_
	Deduces that if solutions exist they	AO2.2a	A1	$\Rightarrow 30\sec^3 x + 2 = 7\sec^2 x + 7\sec x$
	must be of the form $\sec x = -\frac{1}{2}$, \sec			
	$x = 1/3$ or $\sec x = 2/5$ OE	A O O A	F4	$30\sec^3 x - 7\sec^2 x - 7\sec x + 2 = 0$
	Explains that the range of $\sec x$ is	AO2.4	E1	$\Rightarrow (2\sec x + 1)(5\sec x - 2)(3\sec x - 1) = 0$
	$(-\infty,-1]\cup[1,\infty)$ OE			1 1 2
	OE for $\cos x$			$\Rightarrow \sec x = -\frac{1}{2}, \frac{1}{3}, \frac{2}{5}$
	Completes argument explaining	AO2.1	R1	2 3 5
	that there cannot be any real			These values do not fall within the
	solutions as values are outside of			range of sec <i>x</i> as they are between -1 and 1
	the function's range.			
				$\therefore \frac{30\sec^2 x + 2\cos x}{7} = \sec x + 1 \text{ has}$
				no real solutions.
	Total		10	no roai solutions.
<u> </u>	Iotai		10	

Q	Marking instructions	AO	Mark	Typical solution
<u>u</u>	Marking instructions Identifies and clearly defines	AO3.1b	B1	Typical solution
13	consistent variables for length and	AO3.10	ы	Width of rectangle = 2x
13	width. Can be shown on diagram.			Length of rectangle = 2 <i>y</i>
	Models the area of rectangle with	AO3.3	M1	4 – 4 m
	an expression of the correct	A03.3	IVII	A = 4xy
	dimensions			
	Eliminates either variable to form a	AO1.1a	M1	$x^2 + y^2 = 16$
	model for the area in one variable.			
	Obtains a correct equation to	AO1.1b	A1	$A = 4x\sqrt{16 - x^2}$
	model the area in one variable			
	Differentiates their expression for	AO3.4	M1	$\frac{dA}{dx} = 4\sqrt{16 - x^2} - \frac{4x^2}{\sqrt{16 - x^2}}$
	area. Condone one error			dx $\sqrt{16-x^2}$
				$dA = 64 - 8x^2$
				$\frac{dA}{dx} = \frac{64 - 8x^2}{\sqrt{16 - x^2}}$
				For maximum point $\frac{dA}{dt} = 0$
				For maximum point $\frac{1}{dx} = 0$
	Explains that their derivative equals	AO2.4	E1	$64-8x^2$
	zero for a maximum or stationary			$\frac{64-8x^2}{\sqrt{16-x^2}} = 0$
	point.			_
				$x = 2\sqrt{2}$
	Equates area derivative to zero	AO1.1b	A1	dA = 0.448
	and obtains correct value for either			When $x = 2.8$, $\frac{dA}{dx} = 0.448$
	variable. CAO			
	Completes a gradient test or uses	AO1.1a	M1	When $x = 2.9$, $\frac{dA}{dx} = -1.191$
	second derivative of their area	7.01.1a	141 1	Therefore maximum
	function to determine nature of			The clote maximum
	stationary point			
	Deduces that the area is a	AO2.2a	R1	The maximum area is 32 sq in
	maximum at $x = 2\sqrt{2}$ or $\theta = \pi$			
	maximum at $x = 2\sqrt{2}$ or $\theta = \frac{\pi}{4}$			
	Values need not be exact			
	Obtains maximum area with correct	AO3.2a	B1	7
	units AWRT 32			
	Total		10	

Q	Marking instructions	AO	Mark	Typical solution
	Explains why $\angle EFQ = A$			$\angle OQR = \angle FQE$ vertically opposite
14(a)	Must be a fully correct explanation with reasons which may include: Vertically opposite angles and right angle implies similar triangles.	AO2.4	E1	angles $\angle ORQ = \angle FEQ = 90^{\circ}$ So $\angle EFQ = A$
	Deduces $\frac{PF}{EF} = \cos\left(A\right)$ AND $\frac{EF}{OF} = \sin(B)$ Must have at least stated or implied that $\angle EFQ = A$ through similarity	AO2.2a	R1	Since $\angle EFQ = A$ $\frac{PF}{EF} = \cos(A)$ And $\frac{EF}{OF} = \sin(B)$ in triangle OEF
14(b)	Completes proof	AO2.2a	В1	$\frac{DE}{OE} \times \frac{OE}{OF} + \frac{PF}{EF} \times \frac{EF}{OF}$ $= \sin A \cos B + \cos A \sin B$
14(c)	Explains that the proof is based on right angled triangles which limits A and B to acute angles	AO2.3	E1	Since the proof is based on the diagram which uses right-angled triangles it is assumed that <i>A</i> and <i>B</i> are acute. Therefore, the proof only holds for acute angles.
14(d)	Substitutes $-B$ into identity for $\sin(A+B)$ to give $\sin(A-B)$	AO2.1	R1	$\sin(A-B) = \sin A \cos(-B) + \cos A \sin(-B)$
	Recalls at least one of the identities $sin(-B) = -sin(B)$ cos(-B) = cos(B) Must be explicitly stated	AO1.2	B1	$\sin(-B) = -\sin(B)$ $\cos(-B) = \cos(B)$
	Deduces correct identity with no errors. This must be clearly deduced from a correct argument and not simply stated.	AO2.2a	R1	Hence $\sin(A-B) = \sin A \cos B - \cos A \sin B$
	Total		7	

Q	Marking instructions	AO	Mark	Typical solution
15(a)	Forms expression of the correct form for the gradient of the line AB condone sign error	AO1.1a	M1	Gradient of AB $= \frac{(-4+h)^3 - 48(-4+h) - ((-4)^3 - 48(-4))}{h}$
	Obtains correct expansion of $(-4+h)^3$	AO1.1b	B1	$= \frac{h^3 - 12h^2 + 48h - 64 - 48h + 192 - 128}{h}$
	Obtains correct expansion of numerator	AO1.1b	A1	$=\frac{h^3-12h^2}{h}$
	Simplifies numerator and shows given result	AO2.1	R1	$=h^2-12h$
15(b)	Explains that as $h \rightarrow 0$ the gradient of the line AB \rightarrow the gradient of the curve or tangent to the curve	AO2.4	E1	The gradient of the curve is given by $\lim_{h\to 0} h^2 - 12h$
	Or gradient of curve is given by $\lim_{h\to 0}h^2-12h$ Must not use $h=0$			
	Explains that $\lim_{h\to 0} h^2 - 12h = 0$ therefore A must be a stationary point	AO2.4	E1	As $h \rightarrow 0$, $h^2 - 12h \rightarrow 0$ therefore A must be a stationary point
	Total		6	

100

TOTAL