

Mark Scheme (Results)

June 2011

GCE Statistics S2 (6684) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA028840 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 6684 Statistics S2 Mark Scheme

Scheme	Marks
Гhe <u>list</u> of <u>ID numbers</u>	B1 (1)
$F \sim B(50, 0.02)$	B1 B1 (2) 3
B1 for idea of list/register/database and identity numbers NB B0 if referring to the sample or 50 or only part of the population. These must be in part (b) to gain the marks ¹⁸ B1 for Binomial distribution n^{d} B1 for $n = 50$ and $p = 0.02$ or (50,0.02) NB (0.02, 50) is B0 Po(1) alone is B0B0 For a probability table ¹⁴ B1 Use of B(50,0.02) NB P($X = 0$) = 0.3642 n^{nd} B1 Table must have all 50 values and their probabilities.	
	The list of ID numbers $7 \sim B(50,0.02)$ B1 for idea of list/register/database and identity numbers NB B0 if referring to the sample or 50 or only part of the population. Chese must be in part (b) to gain the marks st B1 for Binomial distribution st B1 for n = 50 and p = 0.02 or (50,0.02) NB (0.02, 50) is B0 Po(1) alone is B0B0 <u>Sor a probability table</u> st B1 Use of B(50,0.02) NB P(X = 0) = 0.3642

<u> </u>	advancing learning, changing lives			
Question Number	Scheme		Marks	
2. (a)	Poisson		B1 (1)	
(b)	$H_0: \mu = 9 \text{ (or } \lambda = 36)$ $H_1: \mu > 9 \text{ (or } \lambda > 36)$		B1 B1	
	$X \sim Po(9)$ and $P(X \ge 12) = 1 - P(X \le 11)$ or	$P(X \le 14) = 0.9585$ $P(X \ge 15) = 0.0415$	M1	
	= 1-0.8030 = 0.197	$\underline{CRX} \ge 15$	A1	
	(0.197 > 0.05) so not significant/ accept H ₀ / Not in CR		M1d	
	he does not have evidence to switch on the speed	restrictions (o.e)	Alft (6)	
(c)	Let $Y =$ the number of vehicles in 10 s then $Y \sim F$	Po(6)	B1	
	Tables: $P(Y < 10) = 0.9574$ so $P(Y > 11) = 0.0426$)	M1	
		ds <u>11</u> vehicles	A1	
			(3	
(a) (b)	B1 for Poisson or Po. Ignore their value for the second state of	ing P(X≤14) = 0.9585 or P(X≥15) = 197 P(X≤11) = 0.8030 on its own score For a correct statement based on the ts eg "significant" and "accept H ₀ ". A correct contextual statement on it p < 0.05 or $p > 0.95significant/ reject H0/ In CRSufficient evidence to switch on therestrictionsing P(X≤15) = 0.9780 or P(X≥16) =X ≤ 11$ = 0.8030 on its own scores M For a correct statement based on the	es M1A1 table below Ignore s own scores he <u>speed</u> = 0.022. May /11A1 table below.	

Ourstien	advancing learnin	
Question Number	Scheme	Marks
	comparisons . 2 nd A1 for a correct contextualised statement. NB A correct contextual statement on it M1A1.	s own scores
	0.025 0.975	
	2^{nd} M1 not significant/ accept H ₀ / Not in CR significant/ reject H ₀ / In CR	
	2nd A1Insufficient evidence to switch on the speed restrictionsSufficient evidence to switch on th speed restrictions	ne
(c)	B1 for identifying Po(6) - may be implied by use of correct tables M1 any one of the probs 0.9574 or 0.0426 or 0.9799 or 0.0201 may be implied by answer of 11 A1 cao do not accept $X \ge 11$ NB answer of 11 with no working gains all three marks.	⁷ correct
3. (a)	Mode = 3 from graph	B1 (1)
(b)	$\int_{0}^{3} kx^{2} dx = 0.5 \Rightarrow \left[\frac{kx^{3}}{3}\right]_{0}^{3} = 0.5$ So $\frac{27k}{3} - 0 = 0.5 \Rightarrow k = \frac{1}{18}$ (using median = 3)	M1 A1
	So $\frac{27k}{3} - 0 = 0.5 \implies k = \frac{1}{18}$ (using median = 3)	M1d A1
		(4
(c)	Height of triangle = $\frac{1}{18} \times 3^2 = \frac{1}{2}$	B1ft
	Area of triangle = $\frac{1}{2} \times (a-3) \times \frac{1}{2} = \frac{1}{2}$	M1
	so $a = 5$ cao	A1 (3
(d)	From graph distribution is negative skew (left tail is longer) μ < median for negative skew so E(X) < 3	B1 B1d
	$[N.B. E(X) = 2\frac{23}{24}]$	(2)
Notes: (b)	1 st M1 for attempt to integrate $f(x)$ (need x^3). Integration must be in part (b) 1 st A1 for correct integration. Ignore limits for these two marks. 2 nd M1 Dependent on the previous M mark being awarded. For use of correct limits and set equal to 0.5 - leading to a linear equation for <i>k</i> . No need to see 0 substituted. 2 nd A1 for $k = \frac{1}{18}$ or exact equivalent	
	NB $k = \frac{1}{18}$ with no working gains M0A0M0A0	
	$k = \frac{\frac{1}{2}}{9} = \frac{1}{18}$ without sight of integration is M0A0M0A0	
	B1 for correct height of triangle using their k . ie $9k$. May be seen in working for area of	of triangle.
(c)	Or correct gradient of line ie $\frac{9k}{(3-a)}$ o.e.	

GCE Statistics S2 (6684) June 2011

d	vanc	ng	learn	ing,	chan	ging	live

Question Number	Scheme	Marks	
	M1 for a correct linear equation for <i>a</i> , in the form $\pm \frac{1}{2} \times (a-3) \times 9k = \frac{1}{2}$ (Must see the halves)		
	NB if they have stated their height and then used their height rather than $9k$ allow M1 A1 cao		
	NB stating $a = 5$ and then verifying area of the triangle = 0.5 is acceptable. NB $a = 5$ on its own is B0M0A0		
	SC Integration of both parts = 1 or Integration of line = 0.5 leading to $a^2 - 8a + 15 = 0$ M1 and if they identify $a = 5$ A1	gets B1	
(d)	1^{st} B1for identifying negative skew 2^{nd} B1dependent on previous B mark being awarded. For correct deduction E(X) <3		
4 (a)	$\frac{9.5-7}{10-7}$	M1	
	$=\frac{5}{6}$ awrt 0.833	A1	
		(2)	
(b)	P(Longest > 9.5) = 1 - P(all < 9.5) = $1 - \left(\frac{5}{6}\right)^3$	M1	
	$=\frac{91}{216}$ or 0.421	A1	
		(2)	
(c)	P(a stick < 7.6) = $\frac{0.6}{3} = 0.2$	B1	
	Let $Y =$ number of sticks (out of 6) <7.6 then $Y \sim B(6, 0.2)$ $P(Y > 4) = 1 - P(Y \le 4)$ = 1 - 0.9984	M1 M1	
	$= 0.0016 \text{ or } \frac{1}{625}$	A1 (4) 8	
Notes:			
(a)	M1 for an expression for the probability e.g. $\int_{7}^{9.5} \frac{1}{3} dx$		
(b)	M1 for $1-(a)^3$ or $(1-a)^3 + 3(1-a)^2 a + 3(1-a)a^2$		
(c)	A1 awrt 0.421 B1 0.2 may be implied by at least one correct probability 1^{st} M1 for writing or using B(6, p) may be implied by $np^x(1-p)^{6-x}$ using their p and n 2 2^{nd} M1 for writing or using $1 - P(Y \le 4)$ or $np^5(1-p) + p^6$ (n is an integer > 1) A1 cao	 ≥1	
	NB 0.0016 with no working gets B0M0M0A0		
5.			
(a)	$X \sim Po(5); P(X \le 3) = 0.2650$	M1 A1	
		(2)	

Г

		ng, changing lives
Question Number	Scheme	Marks
(b)	Let <i>Y</i> = the no.of planks with at most 3 defects, <i>Y</i> ~Binomial $P(Y < 2) = P(Y \le 1)$ $= \begin{bmatrix} 0.735^6 + 6 \times 0.265 \times 0.735^5 \end{bmatrix}$ = 0.4987 awrt 0.499 or 0.498	M1 A1ft M1 A1 A1
(c)	Let $T = \text{total number of defects on 6 planks}, T \sim \text{Po}(30) \text{ so } T \approx S \sim \text{Normal}$ $S \sim \text{N}(30, 30)$ P(T < 18) = P(S < 17.5) $= P\left(z < \frac{17.5 - 30}{\sqrt{30}}\right)$ = P(Z < -2.28) = 0.01123 awrt 0.0112 or 0.0113	(5) M1 A1 M1 M1 A1 A1 A1 (6)
Notes: (a) (b) (c)	M1 for identifying Po(5) - it should be clearly seen somewhere or implied A1 for correct probability. Allow 0.265 1^{st} M1 for writing or using the binomial - may be implied by use of $nq^{x}(1-q)^{6\cdot x}$ with n 1^{st} A1ft for $n = 6$ and $p =$ their (a) may be implied by $\delta p(1-p)^{5}$ or $(1-p)^{6}$ NB if they write B(6,(a)) they get M1 A1 2^{nd} M1 for writing P($Y \le 1$) or P($Y = 0$) + P($Y = 1$) or $(1-q)^{6} + nq(1-q)^{5}$ with $n \ge 1$ 2^{nd} A1 $(1-p)^{6} + \delta p(1-p)^{5}$ where $p =$ their (a) 3^{st} A1 for a normal approx 1^{st} A1 for a normal approx 1^{st} A1 for correct mean and sd 2^{nd} M1 for use of continuity correction, either 17.5 or 18.5 or 42.5 or 41.5 seen 3^{rd} M1 Standardising with their mean and their sd and 17.5 or 18 or 18.5 or 41.5 or 44.5 or 44	AO 2 or 42.5 andardisation

Question Number	Scheme	Marks			
6.	$H_0: p = 0.15$ $H_1: p \neq 0.15$	B1 B1			
(a)					
	$X \sim B(30, 0.15)$ P(X \le 1) = 0.0480 or CR: X = 0	M1 A1			
	$P(X \le 1) = 0.0480$ of CR. $X = 0$ (0.0480 > 0.025)	AI			
	not a significant result or do not reject H_0 or not in CR	M1			
	there is no evidence of a <u>change</u> in the <u>proportion of customers</u> <u>buying</u> an item <u>from</u>	A1ft			
	the display.	(6)			
(b)	$H_0: p = 0.2$ $H_1: p > 0.2$	B1			
	Let $S =$ the number who buy sandwiches, $S \sim B(120, 0.2)$,				
	$S \approx W \sim N\left(24, \sqrt{19.2}^2\right)$	M1 A1			
	$P(S \ge 31) = P(W \ge 30.5)$	M1			
	$= P\left(Z > \frac{30.5 - 24}{\sqrt{19.2}}\right) \text{or} \frac{x - 0.5 - 24}{\sqrt{19.2}} = 1.2816$	M1			
	$-1\left(2 > \frac{1}{\sqrt{19.2}}\right)$ or $\frac{1}{\sqrt{19.2}} = 1.2810$	M1			
	[= P(Z > 1.48)]	2.61			
	= 1 - 0.9306 = 0.0694 $x = 30.1$	M1 A1			
	x = 50.1 < 0.10 so a significant result, there is evidence that more customers are purchasing	B1ft			
	sandwiches or the shopkeepers claim is correct.	(8)			
Notes:	sandwhenes of the shopkeepers chann is correct.	14			
(a)	$1^{\text{st}} \text{ B1 for } H_0 \text{ must use } p = 2^{\text{nd}} \text{ B1 for } H_1 \text{ must use } p$				
. /	1 st M1 for writing or using B(30,0.15) – may be implied by correct CR 1 st A1 0.0480 or $X = 0$. Allow $X \le 0$. Ignore upper CR. NB Allow CR $X \le 1$ if using one tail test.				
	2 nd M1 A correct statement (see table below) Do not allow non-contextual conflicting statements				
	eg"significant" and "accept H ₀ ". Ignore comparisons				
	2^{nd} A1 for a correct statement in context. For context we need idea of <u>change/decrease</u>				
	of customers buying from display – may use different words. NB A correct contextual s	tatement on			
	its own scores M1A1 Two tail $0.025 or Two tail p < 0.025 or p > 0.975 or$				
	Two tail $0.025 orOne tail 0.05 Two tail p < 0.025 or p > 0.975 orOne tail p < 0.05 or p > 0.95$				
	2^{nd} not significant/ accept H ₀ / Not in CR or significant/ reject H ₀ / In CR or con	textual			
	M1 contextual	loxidui			
	2^{nd} There is no evidence of a <u>change/decrease</u> There is evidence of a <u>change/decrease</u>	ease in			
	A1 in the proportion of customers buying an the proportion of customers buying				
	item from the <u>display</u> from the <u>display</u> .				
(b)	1^{st} B1 both hypotheses correct – must use <i>p</i> .				
	1 st M1 for a normal approx				
	1 st A1 for correct mean and sd				
	2^{nd} M1 for use of continuity correction, either 30.5 or 31.5 or $(x \pm 0.5)$ seen 2^{rd} M1 step depleting with the image and the inequal 20.5, 21 an 21.5 or $(x \pm 0.5)$				
	3^{rd} M1 standardising with their mean and their sd and 30.5, 31 or 31.5 or x or (x±0.5))				
	4^{th} M1 for 1 - tables value or 1.2816 2^{nd} A1 for awrt 0.069 or $x = 30.1$				
		we need			
2 nd B1ft For a correct conclusion in context using their probability and 0.1 For context v idea of more customers buying sandwiches – may use different words					
	luca of <u>more customers buying sandwrenes</u> – may use unterent words				

advancing	learning,	changing	lives
-----------	-----------	----------	-------

Question Number	Scheme	Marks
	One tail $0.1 or Two tail0.05 One tail p < 0.1 or p > 0.9 or Two0.05 or p > 0.95$	tail <i>p</i> <
	$ \begin{array}{c c} 2^{nd} & \text{not significant/ accept } H_0 / \text{ Not in CR or} & \text{significant/ reject } H_0 / \text{ In CR or cont} \\ M1 & \text{contextual} & \end{array} $	
	2ndThere is no evidence of an increase in the proportion of customers buying sandwichesThere is evidence of a change/incre proportion of customers buying san	
	SC using P(X<31.5) – P(X<30.5) can get B1M1 A1 M1 M1M0A0B0	
7 (a)	\cap shape which does not go below the <i>x</i> -axis [condone missing patios] Graph must end at the points (1,0) and (5,0) and the points labelled at 1 and 5	B1 B1 (2)
(b)	E(X) = 3 (by symmetry)	B1 (1)
(c)	$\left[E(X^{2})\right] = \int x^{2} f(x) dx = \frac{3}{32} \int (6x^{3} - x^{4} - 5x^{2}) dx$	M1
	$=\frac{3}{32}\left[\frac{6x^4}{4}-\frac{x^5}{5}-\frac{5x^3}{3}\right]_{1}^{5}$	A1
	$= \frac{3}{32} \left(\left[\frac{6 \times 625}{4} - 625 - \frac{625}{3} \right] - \left[\frac{6}{4} - \frac{1}{5} - \frac{5}{3} \right] \right) = 9.8 $ (*)	M1 A1 cso (4)
(d)	s.d. = $\sqrt{9.8 - E(X)^2}$, = 0.8944 awrt 0.894	M1 A1
(e)	$F(1) = 0 \Rightarrow \frac{1}{32}(a-15+9-1) = 0$, leading to $a = 7$	(2) M1 A1
(f)	F(2.29) = 0.2449, F(2.31) = 0.2515 Since $F(q_1) = 0.25$ and these values are either side of 0.25 then 2.29< $q_1 < 2.31$	(2) M1 A1 A1 (3)
(g)	Since the distribution is symmetric $q_3 = 5 - 1.3 = \underline{3.7}$ can	
(h)	We know P($q_1 = 2.3 < X < 3.7 = q_3$) = 0.5 so $k\sigma = 0.7$ so $k = \frac{0.7}{0.894} = 0.7826 = awrt 0.78$	M1
	0.074	A1 (2)
		17

Question Number	Scheme		Marks
Notes:			
(c)	This part is a "show that" therefore we need to see all the s		
	1 st M1 for showing intention of doing $\int x^2 f(x)$ and atter	npt to multiply out bracket	
	1^{st} A1 for correct integration, cao, ignore limits for this n 2^{nd} M1 for use of correct limits. Need to see evidence of s 2^{nd} A1 for cso leading to 9.8. Do not ignore subsequent w	subst both 5 and 1.	
(d)	M1 for a correct expression for standard deviation, m	ust include $$	
	A1 allow awrt 0.894, $\sqrt{0.8}, \frac{2\sqrt{5}}{5}$ oe		
(e)	M1 for a correct method to find <i>a</i> . e.g F(5) = 1 or $\int_{1}^{5} f$	f(x) = 1	
(f)	M1 for an attempt at $F(2.29)$ or $F(2.31)$ or a)	put $F(x) = 0.25$ (ft the	ir value of
	1^{st} A1 for both values seen. awrt 0.245 and 0.252 2.305, -0.064	find 3 solutions awrt 6.7	6/6.75,
	2^{nd} A1 for comparison with 0.25 and stating Q ₁	state only 2.30 in range a	nd stating
	Q1		-
	lies between 2.29 and 2.31	lies between 2.29 and 2.3	31
(h)	M1 For $k\sigma = awrt 0.7$		
	A1 Allow awrt 0.78		
	NB a correct awrt 0.78 gains M1 A1		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA028840 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/guals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

