$$px^3 + qxy + 3y^2 = 26$$

where p and q are constants.

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{apx^2 + bqy}{qx + cy}$$

where a, b and c are integers to be found.

(4)

Given that

- the point P(-1, -4) lies on C
- the normal to C at P has equation 19x + 26y + 123 = 0
- (b) find the value of p and the value of q.

(5)

Figure 4

Figure 4 shows a sketch of the curve with equation $x^2 - 2xy + 3y^2 = 50$

(a) Show that
$$\frac{dy}{dx} = \frac{y - x}{3y - x}$$
 (4)

The curve is used to model the shape of a cycle track with both x and y measured in km.

The points P and Q represent points that are furthest west and furthest east of the origin O, as shown in Figure 4.

Using part (a),

(b) find the exact coordinates of the point P.

(5)

(c) Explain briefly how to find the coordinates of the point that is furthest north of the origin O. (You **do not** need to carry out this calculation).

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

14. The curve C, in the standard Cartesian plane, is defined by the equation

$$x = 4\sin 2y \qquad \frac{-\pi}{4} < y < \frac{\pi}{4}$$

The curve C passes through the origin O

(a) Find the value of $\frac{dy}{dx}$ at the origin.

(2)

- (b) (i) Use the small angle approximation for $\sin 2y$ to find an equation linking x and y for points close to the origin.
 - (ii) Explain the relationship between the answers to (a) and (b)(i).

(2)

(c) Show that, for all points (x, y) lying on C,

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{a\sqrt{b-x^2}}$$

where a and b are constants to be found.

$$x^2 \tan y = 9 \qquad 0 < y < \frac{\pi}{2}$$

(a) Show that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-18x}{x^4 + 81}$$

(4)

(b) Prove that C has a point of inflection at $x = \sqrt[4]{27}$

Leave blank

5. (a) Prove, by using logarithms, that

$$\frac{\mathrm{d}}{\mathrm{d}x}(2^x) = 2^x \ln 2$$

(3)

The curve C has the equation

$$2x + 3y^2 + 3x^2y + 12 = 4 \times 2^x$$

The point P, with coordinates (2, 0), lies on C.

(b) Find an equation of the tangent to C at P.

(6)

14

Leave blank

2.	A curve	C has	the	equation
	11 Cui v C	Ciius	UIIC	equation

$$x^3 - 3xy - x + y^3 - 11 = 0$$

Find an equation of the tangent to C at the point (2, -1), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

1. A curve has equation

$$4x^2 - y^2 + 2xy + 5 = 0$$

The points P and Q lie on the curve.

Given that $\frac{dy}{dx} = 2$ at P and at Q,

(a) use implicit differentiation to show that y - 6x = 0 at P and at Q.

(6)

(b) Hence find the coordinates of P and Q.

$$3^x + 6y = \frac{3}{2}xy^2$$

Find the exact value of $\frac{dy}{dx}$ at the point on C with coordinates (2, 3). Give your answer in the form $\frac{a + \ln b}{8}$, where a and b are integers.

(7)

2. The point P with coordinates $\left(\frac{\pi}{2}, 1\right)$ lies on the curve with equation

$$4x\sin x = \pi y^2 + 2x, \qquad \frac{\pi}{6} \leqslant x \leqslant \frac{5\pi}{6}$$

Find an equation of the normal to the curve at P.

Leave blank

1.	Find an	equation	of the	tangent	to	the	curve
----	---------	----------	--------	---------	----	-----	-------

$$x^3 + 3x^2y + y^3 = 37$$

at the point (1, 3). Give your answer in the form ax + by + c = 0, where a, b and c are integers.

Leave blank

1. A curve <i>C</i>	has equation
----------------------------	--------------

$3x^{2} +$	2xv	$-2y^{2}$	+ 4	= 0
	200 y	<i>-y</i>		0

Find an	equation	for the	tangent	to <i>C</i>	at the	point	(2, 4)	, giving	your	answer	in	the	form
ax + by	+c=0 w	here a,	b and c	are in	teger	S.							

("

$$y^3 + x^2y - 6x = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

(b) Hence find the exact coordinates of the points on C for which $\frac{dy}{dx} = 0$

$$4x^2 - y^3 - 4xy + 2^y = 0$$

The point P with coordinates (-2, 4) lies on C.

(a) Find the exact value of $\frac{dy}{dx}$ at the point P.

(6)

The normal to C at P meets the y-axis at the point A.

(b) Find the y coordinate of A, giving your answer in the form $p + q \ln 2$, where p and q are constants to be determined.

$$2x^2y + 2x + 4y - \cos(\pi y) = 17$$

(a) Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.

(5)

The point *P* with coordinates $\left(3, \frac{1}{2}\right)$ lies on *C*.

The normal to C at P meets the x-axis at the point A.

(b) Find the x coordinate of A, giving your answer in the form $\frac{a\pi + b}{c\pi + d}$ where a, b, c and d are integers to be determined.

(4)

Leave blank

2.	The	curve	C	has	eo	uation
≠•	1110	cuive	\sim	mas	CC	uation

$$3^{x-1} + xy - y^2 + 5 = 0$$

Show that $\frac{dy}{dx}$ at the point (1, 3) on the curve C can be written in the form $\frac{1}{\lambda} \ln(\mu e^3)$, where λ and μ are integers to be found.

(7)