

Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Core Mathematics C2 (6664/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code UA041196 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2}+bx+c) = (x+p)(x+q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

May 2015 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme	Marks	
1.	$\left(2-\frac{x}{4}\right)^{10}$		
Way 1	$2^{10} + \underbrace{\begin{pmatrix} 10 \\ 1 \end{pmatrix}}_{2^{9}} 2^{9} \left(-\frac{1}{4} \underbrace{x}_{=}\right) + \underbrace{\begin{pmatrix} 10 \\ 2 \end{pmatrix}}_{2} 2^{8} \left(-\frac{1}{4} \underbrace{x}_{=}\right)^{2}_{=} + \dots \qquad \text{For } \underbrace{\text{either}}_{\text{including a correct } \underline{\text{binomial coefficient}}}_{\text{with a } \underbrace{\text{correct power of } x}$	M1	
	First term of 1024	B1	
	Either $-1280x$ or $720x^2$ (Allow +-1280x here) = $1024 - 1280x + 720x^2$	A1	
	Both $-1280x$ and $720x^2$ (Do not allow +-1280x here)	A1 [4]	
Way 2	$\left(2 - \frac{x}{4}\right)^{10} = 2^k \left(1 - \underbrace{\underline{10}}_{\underline{\underline{10}}} \times \frac{\underline{x}}{\underline{\underline{8}}} + \underbrace{\underline{10} \times 9}_{\underline{\underline{2}}} \left(-\frac{\underline{x}}{\underline{\underline{8}}}\right)^2_{\underline{\underline{2}}} \right)$	M1	
	1024(1±)		
	$= 1024 - 1280x + 720x^2$	<u>B1</u> A1 A1	
	Notes	[4]	
correct p coefficient B1: Award th A1: For one of Allow 72 A1: For both Allow ter N.B. If t	er the x term <u>or</u> the x^2 term having correct structure i.e. a <u>correct</u> binomial coefficient in any for <u>ower of x</u> . Condone sign errors and condone missing brackets and allow alternative forms for binom nts e.g. ${}^{10}C_1$ or $\binom{10}{1}$ or even $\binom{10}{1}$ or 10. The powers of 2 or of ¹ / ₄ may be wrong or missing his for 1024 when first seen as a distinct constant term (not $1024x^0$) and not $1 + 1024$ correct term in x with coefficient simplified. Either $-1280x$ or $720x^2$ (allow $+-1280x$ here) $20x^2$ to come from $\left(\frac{x}{4}\right)^2$ with no negative sign. So use of $+$ sign throughout could give M1 correct simplified terms i.e. $-1280x$ and $720x^2$ (Do not allow $+-1280x$ here) rms to be listed for full marks e.g. 1024 , $-1280x$, $+720x^2$ they follow a correct answer by a factor such as $512-640x + 360x^2$ then isw hay be listed. Ignore any extra terms.	nial ng.	
M1: Correct s	Notes for Way 2 tructure for at least one of the underlined terms. i.e. a <u>correct</u> binomial coefficient in any form with	the correct	
	\underline{x} . Condone sign errors and condone missing brackets and allow alternative forms for binomial coefficient \underline{x}		
e.g. ${}^{10}C_1$ or $\binom{10}{1}$ or even $\binom{10}{1}$ or 10. <i>k</i> may even be 0 or 2^k may not be seen. Just consider the bracket for			
this mar B1: Needs 10	k. 24(1 To become 1024		

A1, A1: as before

Question Number	Scheme		Marks
	Way 1	Way 2	
2 (a)	$(x m2)^{2} + (y \pm 1)^{2} = k, k > 0$	$x^2 + y^2 m4x \pm 2y + c = 0$	M1
	Attempts to use $r^2 = (4-2)^2 + (-5+1)^2$	$4^2 + (-5)^2 - 4 \times 4 + 2 \times -5 + c = 0$	M1
	Obtains $(x-2)^2 + (y+1)^2 = 20$	$x^2 + y^2 - 4x + 2y - 15 = 0$	A1 (3)
	N.B. Special case: $(x-2)^2 - (y+1)^2 = 20$ is	not a circle equation but earns M0M1A0	(5)
(b) Way 1	Gradient of radius from centre to $(4, -5) = -2$	(must be correct)	B1
	Tangent gradient = $-\frac{1}{\text{their numerical gradient of radius}}$		
	Equation of tangent is $(y+5) = \frac{1}{2}(x-4)$		M1
	_	4 = 0 or other integer multiples of this answer)	A1
			(4)
b)Way 2	Quotes $xx' + yy' - 2(x + x') + (y + y') - 15 =$	= 0 and substitutes (4, -5)_	B1
	4x - 5y - 2(x + 4) + (y - 5) - 15 = 0 so $2x - 2x - 3x - 3x - 3x - 3x - 3x - 3x -$	4y - 28 = 0 (or alternatives as in Way 1)	M1,M1A1
			(4)
b)Way 3	Use differentiation to find expression for grad		
	Either $2(x - 2) + 2(y + 1)\frac{dy}{dx} = 0$ or states $y =$	$-1 - \sqrt{20 - (x - 2)^2}$ so $\frac{dy}{dx} = \frac{(x - 2)}{\sqrt{20 - (x - 2)^2}}$	B1
	Substitute $x = 4$, $y = -5$ after valid differentiati	ion to give gradient =	M1
	Then as Way 1 above $(y+5) = \frac{1}{2}(x-4)$ so $x - 2y - 14 = 0$		M1 A1
			(4)
			[7]
	N	lotes	

M1: Attempts distance between two points to establish r^2 (independent of first M1)- allow one sign slip only using distance formula with -5 or -1, usually (-5 - 1) in 2nd bracket. Must not identify this distance as diameter.

This mark may alternatively (e.g. way 2)be given for substituting (4, -5) into a **correct circle** equation with one unknown Can be awarded for $r = \sqrt{20}$ or for $r^2 = 20$ stated or implied but not for $r^2 = \sqrt{20}$ or r = 20 or $r = \sqrt{5}$

A1: Either of the answers printed or correct equivalent e.g. $(x-2)^2 + (y+1)^2 = (2\sqrt{5})^2$ is A1 but $2\sqrt{5}^2$ (no bracket) is A0 unless there is recovery

Also $(x-2)^2 + (y-(-1))^2 = (2\sqrt{5})^2$ may be awarded M1M1A1as a correct equivalent.

N.B. $(x-2)^2 + (y+1)^2 = 40$ commonly arises from one sign error evaluating r and earns M1M1A0 (b) Way 1:

B1: Must be correct answer -2 if evaluated (otherwise may be implied by the following work)

M1: Uses negative reciprocal of their gradient

M1: Uses $y - y_1 = m(x - x_1)$ with (4,-5) and their **changed** gradient **or** uses y = mx + c and (4, -5) with their changed gradient (not gradient of radius) to find c

A1: answers in scheme or multiples of these answers (must have "= 0"). NB Allow 1x - 2y - 14 = 0

N.B. $(y+5) = \frac{1}{2}(x-4)$ following gradient of is $\frac{1}{2}$ after errors leads to x - 2y - 14 = 0 but is worth B0M0M0A0 **Way 2:** Alternative method (b) is rare.

Way 3: Some may use implicit differentiation to differentiate- others may attempt to make *y* the subject and use chain rule **B1: the differentiation** must be accurate and the algebra accurate too. Need to take (-) root not (+)root in the alternative **M1:** Substitutes into their gradient function but must follow valid accurate differentiation

M1: Must use "their" tangent gradient and y+5 = m(x-4) but allow over simplified attempts at differentiation for this mark. A1: As in Way 1

Question Number	Scheme	Marks	
3.	$f(x) = 6x^3 + 3x^2 + Ax + B$		
Way 1 (a)	Attempting $f(1) = 45$ or $f(-1) = 45$	M1	
	$f(-1) = -6 + 3 - A + B = 45$ or $-3 - A + B = 45 \implies B - A = 48 * (allow 48 = B - A)$	A1 * cso (2)	
Way 1 (b)	Attempting $f(-\frac{1}{2}) = 0$	M1	
	$6\left(-\frac{1}{2}\right)^3 + 3\left(-\frac{1}{2}\right)^2 + A\left(-\frac{1}{2}\right) + B = 0 \text{ or } -\frac{1}{2}A + B = 0 \text{ or } A = 2B$	A1 o.e.	
	Solve to obtain $B = -48$ and $A = -96$	M1 A1 (4)	
Way 2 (a)	Long Division $(6x^3 + 3x^2 + Ax + B) \div (x \pm 1) = 6x^2 + px + q$ and sets remainder = 45	M1	
	Quotient is $6x^2 - 3x + (A+3)$ and remainder is $B - A - 3 = 45$ so $B - A = 48$ *	A1*	
Way 2 (b)	$(6x^3 + 3x^2 + Ax + B) \div (2x + 1) = 3x^2 + px + q$ and sets remainder = 0	M1	
	Quotient is $3x^2 + \frac{A}{2}$ and remainder is $B - \frac{A}{2} = 0$	A1	
	Then Solve to obtain $B = -48$ and $A = -96$ as in scheme above (Way 1)	M1 A1	
(c)	Obtain $(3x^2 - 48), (x^2 - 16), (6x^2 - 96), (3x^2 + \frac{A}{2}), (3x^2 + B), (x^2 + \frac{A}{6}) \text{ or } (x^2 + \frac{B}{3})$ as	B1ft	
	factor or as quotient after division by $(2x + 1)$. Division by $(x+4)$ or $(x-4)$ see below		
	Factorises $(3x^2 - 48), (x^2 - 16), (48 - 3x^2), (16 - x^2) \text{ or } (6x^2 - 96)$	M1	
	= 3 (2x + 1)(x + 4)(x - 4) (if this answer follows from a wrong A or B then award A0)	Alcso	
	isw if they go on to solve to give $x = 4$, -4 and -1/2 Notes	(3) [9]	
	 (a) Way 1: M1: 1 or -1 substituted into f(x) and expression put equal to ±45 A1*: Answer is given. Must have substituted -1 and put expression equal to +45. Correct equation with powers of -1 evaluated and conclusion with no errors seen. 		
	M1: Long division as far as a remainder which is set equal to ± 45 A1*: See correct quotient and correct remainder and printed answer obtained with no errors		
•	(b) Way 1: M1: Must see $f(-\frac{1}{2})$ and "= 0" unless subsequent work implies this. A1: Give credit for a correct equation even unsimplified when first seen, then isw.		
	A correct equation implies M1A1.		
	M1: Attempts to solve the given equation from part (a) and their simplified or unsimplifi		
	equation in A and B from part (b) as far as A = or B =(must eliminate one of the constants but algebra need not be correct for this mark). May just write down the correct answers.A1: Both A and B correct		
Way 2:	M1: Long division as far as a remainder which is set equal to 0		
·	A1: See correct quotient and correct remainder put equal to 0		
There n	M1A1: As in Way 1There may be a mixture of Way 1 for (a) and Way 2 for (b) or vice versa.(c) B1: May be written straight down or from long division, inspection, comparing coefficients or pairing terms		
	id attempt to factorise a listed quadratic (see general notes) so $(3x-16)(x+3)$ could get N	-	
A1cso: (0	Cannot be awarded if A or B is wrong) Needs the answer in the scheme or $-3(2x+1)(4+x)(4+x)(4+x))(4+x)(4+x)(4+x))(4+x)(4+x$	-x) or	
	A minority might divide by $(x-4)$ or $(x+4)$ obtaining $(6x^2+27x+12)$ or $(6x^2-21x-12)$		
Т	hey then need to factorise $(6x^2 + 27x + 12)$ or $(6x^2 - 21x - 12)$ for M1		
	en A1cso as before		
But if they g	s: a down $f(x) = 3 (2x+1)(x+4)(x-4)$ with no working, this is B1 M1 A1 give $f(x) = (2x+1)(x+4)(x-4)$ with no working (from calculator?) give B1M0A0 (2x+1)(3x+12)(x-4) or $f(x) = (6x+3)(x+4)(x-4)$ or $f(x) = (2x+1)(x+4)(3x-12)$ is	s B1M1A0	

Question Number	Scheme	Marks	
4. (a)	In triangle OCD complete method used to find angle COD so:		
	Either $\cos COD = \frac{8^2 + 8^2 - 7^2}{2 \times 8 \times 8}$ or uses $\angle COD = 2 \times \arcsin \frac{3.5}{8}$ or $\angle COD =$	M1	
	$(\angle COD = 0.9056(331894)) = 0.906(3sf) *$ accept awrt 0.906	A1 * (2)	
(b)	Uses $s = 8\theta$ for any θ in radians or $\frac{\theta}{360} \times 2\pi \times 8$ for any θ in degrees	M1	
	$\theta = \frac{\pi - "COD"}{2} (= awrt \ 1.12) \text{ or } 2\theta (= awrt \ 2.24) \text{ and Perimeter} = 23 + (16 \times \theta)$	M1	
	accept awrt 40.9 (cm)	A1 (3)	
(c)	Either Way 1: (Use of Area of two sectors + area of triangle)		
	Area of triangle = $\frac{1}{2} \times 8 \times 8 \times \sin 0.906$ (or 25.1781155 accept awrt 25.2)or	241	
	$\frac{1}{2} \times 8 \times 7 \times \sin 1.118$ or $\frac{1}{2} \times 7 \times h$ after <i>h</i> calculated from correct Pythagoras or trig.	M1	
	Area of sector = $\frac{1}{2}8^2 \times "1.117979732"$ (or 35.77535142 accept awrt 35.8)	M1	
	Total Area = Area of two sectors + area of triangle = awrt 96.7 or 96.8 or 96.9 (cm^2)	A1 (3)	
	Or Way 2: (Use of area of semicircle – area of segment)		
	Area of semi-circle = $\frac{1}{2} \times \pi \times 8 \times 8$ (or 100.5)	M1	
	Area of segment = $\frac{1}{2}8^2 \times ("0.906" - \sin"0.906")$ (or 3.807)	M1	
	So area required = awrt 96.7 or 96.8 or 96.9 (cm^2)	A1 (3)	
	Notes		
Or s and	her use correctly quoted cosine rule – may quote as $7^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \cos \alpha \Rightarrow \alpha =$ split isosceles triangle into two right angled triangles and use arcsin or longer methods using Pythagoras arcos (i.e. $\pi - 2 \times \arccos \frac{3.5}{8}$). There are many ways of showing this result.		
A1*: (NI state	t conclude that $\angle COD =$ B this is a given answer) If any errors or over-approximation is seen this is A0. It needs correct work lea ed answer of 0.906 or awrt 0.906 for A1. The cosine of <i>COD</i> is equal to 79/128 or awrt 0.617. Use of 0 not lead to printed answer. They may give 51.9 in degrees then convert to radians. This is fine.		
	The minimal solution $7^2 = 8^2 + 8^2 - 2 \times 8 \times 8 \cos \alpha \Rightarrow \alpha = 0.906$ (with no errors seen) can have M1A1 but errors rearranging result in M1A0		
1	θ		

(b) M1: Uses formula for arc length with r = 8 and any angle i.e. $s = 8\theta$ if working in rads or $s = \frac{\theta}{360} \times 2\pi \times 8$ in degrees

(If the formula is quoted with r the 8 may be implied by the value of their $r\theta$)

M1: Uses angles on straight line (or other geometry) to find angle BOC or AOD and uses

Perimeter = 23 + arc lengths BC and AD (may make a slip – in calculation or miscopying)

A1: correct work leading to awrt 40.9 not 40.8 (do not need to see cm) This answer implies M1M1A1 (c) Way 1: M1: Mark is given for **correct** statement of area of triangle $\frac{1}{2} \times 8 \times 8 \times \sin 0.906$ (must use correct

angle) or for correct answer (awrt 25.2) Accept alternative correct methods using Pythagoras and $\frac{1}{2}$ base×height

M1: Mark is given for formula for area of sector $\frac{1}{2}8^2 \times 1.117979732$ with r = 8 and their angle BOC or AOD or

(*BOC* + *AOD*) not *COD*. May use $A = \frac{\theta}{360} \times \pi \times 8^2$ if working in degrees

A1: Correct work leading to awrt 96.7, 96.8 or 96.9 (This answer implies M1M1A1)

NB. Solution may combine the two sectors for part (b) and (c) and so might use $2 \times \angle BOC$ rather than $\angle BOC$

Way 2: M1: Mark is given for **correct** statement of area of semicircle $\frac{1}{2} \times \pi \times 8 \times 8$ or for correct answer 100.5

M1: Mark is given for formula for area of segment $\frac{1}{2}8^2 \times ("0.906" - \sin"0.906")$ with r = 8 or 3.81 A1: As in Way 1

Number	Scheme	Marks
		- Iviando
5.(i) (a)	Mark (a) and (b) together $a + ar = 34$ or $\frac{a(1-r^2)}{(1-r)} = 34$ or $\frac{a(r^2-1)}{(r-1)} = 34$; $\frac{a}{1-r} = 162$	B1; B1
(Way 1)	(1-r) (r-1) 1-r Eliminate <i>a</i> to give $(1+r)(1-r) = \frac{17}{81}$ or $1-r^2 = \frac{34}{162}$ (not a cubic)	aM1
(way 1)	(and so $r^2 = \frac{64}{81}$ and) $r = \frac{8}{9}$ only	aA1
(b)		(4) bM1
(0)	Substitute their $r = \frac{8}{9}$ (0 < r < 1) to give $a = a = 18$	bA1 (2)
(Way 2) Part (b) first	Eliminate <i>r</i> to give $\frac{34-a}{a} = 1 - \frac{a}{162}$	bM1
	gives $a = 18$ or 306 and rejects 306 to give $a = 18$	bA1
Then part (a) again	Substitute $a = 18$ to give $r =$	aM1
	$r = \frac{8}{9}$	aA1
(ii)	$\frac{42(1-\frac{6}{7}^n)}{1-\frac{6}{7}} > 290$ (For trial and improvement approach see notes below)	M1
	to obtain So $\left(\frac{6}{7}\right)^n < \left(\frac{4}{294}\right)$ or equivalent e.g. $\left(\frac{7}{6}\right)^n > \left(\frac{294}{4}\right)$ or $\left(\frac{6}{7}\right)^n < \left(\frac{2}{147}\right)$	A1
	So $n > \frac{\log''(\frac{4}{294})''}{\log(\frac{6}{7})}$ or $\log_{\frac{6}{7}}''(\frac{4}{294})''$ or equivalent but must be log of positive quantity	M1
	(i.e. $n > 27.9$) so $n = 28$	A1 (4)
	Notes	
B	1 : Writes a correct equation connecting <i>a</i> and <i>r</i> and 34 (allow equivalent equations – may be implied) 1 : Writes a correct equation connecting <i>a</i> and <i>r</i> and 162 (allow equivalent equation – may be implied) 17 - 24	
Way 1: aN	M1 : Eliminates <i>a</i> correctly for these two equations to give $(1+r)(1-r) = \frac{17}{81}$ or $(1+r)(1-r) = \frac{34}{162}$ or equ	iivalent –
aA	not a cubic – should have factorized $(1 - r)$ to give a correct quadratic A1: Correct value for <i>r</i> . Accept 0.8 recurring or 8/9 (not 0.889) Must only have positive value.	
bA	M1 : Substitutes their $r (0 < r < 1)$ into a correct formula to give value for <i>a</i> . Can be implied by $a = 18$ M1 : must be 18 (not answers which round to 18) nds <i>a</i> first - B1 , B1 : As before then award the (b) M and A marks before the (a) M and A marks	
1.20	$34-a$ a 2 224 5500 0 a a 1 a	
b.A.	1 : Eliminates <i>r</i> correctly to give $\frac{34-a}{a} = 1 - \frac{a}{162}$ or $a^2 - 324a + 5508 = 0$ or equivalent 1 : Correct value for <i>a</i> so <i>a</i> = 18 only. (Only award after 306 has been rejected)	
aM	1 : Substitutes their 18 to give $r =$	
	1 : $r = \frac{8}{9}$ only Allow <i>n</i> or $n - 1$ and any symbols from ">", "<", or "=" etc. A1 : Must be power <i>n</i> (not $n - 1$) with any s	umbol
(ii) M1.	Sees logs correctly on $\left(\frac{6}{7}\right)^n$ or $\left(\frac{7}{6}\right)^n$ not on (36) ⁿ to get as far as <i>n</i> Allow any symbol	symbol
M1 : U		ative
M1: U A1: n	= 28 cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the nega	
M1: U A1: n lo Special cas	= 28 cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the negative $Og(\frac{6}{7})$ or any contradictory statements must be penalised here) Those with equals throughout may gain this negative 27.9 by <i>n</i> =28. Just <i>n</i> = 28 without mention of 27.9 is only allowed following correct inequality work. se: Trial and improvement : Gives <i>n</i> = 28 as <i>S</i> = awrt 290.1 (M1A1) and when <i>n</i> = 27 <i>S</i> = (awrt) 289 so <i>n</i> =	nark if they
M1: U A1: n fo Special cas - n = 28	= 28 cso (any errors with inequalities earlier e.g. failure to reverse the inequality when dividing by the negative $Og(\frac{6}{7})$ or any contradictory statements must be penalised here) Those with equals throughout may gain this normalized by $n=28$. Just $n=28$ without mention of 27.9 is only allowed following correct inequality work.	nark if they

	Scheme	Marks
Number	May mark (a) and (b) together	
6. (a)	Expands to give $10x^{\frac{3}{2}} - 20x$	B1
	Integrates to give $\frac{10}{\frac{5}{2}} x^{\frac{5}{2}} + \frac{-20^{2} x^{2}}{2} (+c)$	M1 A1ft
	Simplifies to $4x^{\frac{5}{2}} - 10x^2(+c)$	A1cao
(b)	Use limits 0 and 4 either way round on their integrated function (may only see 4 substituted)	M1
	Use limits 4 and 9 either way round on their integrated function	dM1
	Obtains either ± -32 or ± 194 needs at least one of the previous M marks for this to be awarded	A1
	(So area = $\left \int_{0}^{4} y dx \right + \int_{4}^{9} y dx$) i.e. 32 + 194, = 226	ddM1,A (5 [9
	Notes	
A1: Co A1: Mi (b) M1: (d) dM1: (A1: At or of ddM1: la A1cao:	$\frac{1}{2} \rightarrow \frac{x^{\frac{1}{2}}}{\frac{5}{2}}$ or $x^{\frac{1}{2}} \rightarrow \frac{x^{\frac{1}{2}}}{\frac{3}{2}}$ or $x^{\frac{1}{2}} \rightarrow \frac{x^{\frac{1}{2}}}{\frac{7}{2}}$ and/or $x \rightarrow \frac{x^2}{2}$. prect unsimplified follow through for both terms of their integration. Does not need (+ c) ust be simplified and correct– allow answer in scheme or $4x^{2\frac{1}{2}} - 10x^2$. Does not need (+ c) loes not depend on first method mark) Attempt to substitute 4 into their integral (however obtain must not be differentiated) or seeing their evaluated number (usually 32) is enough – do not need minus zero. depends on first method mark in (a)) Attempt to subtract either way round using the limits 4 and $A \times 9^{\frac{5}{2}} - B \times 9^2$ with $A \times 4^{\frac{5}{2}} - B \times 4^2$ is enough – or seeing $162 - (-32)$ {but not $162 - 32$ } least one of the values (32 and 194) correct (needs just one of the two previous M marks in (b)) may see $162 + 32 + 32$ or $162 + 64$ or may be implied by correct final answer if not evaluated un "working Adds 32 and 194 (may see $162 + 32 + 32$ or may be implied by correct final answer if not evaluated st line of working). This depends on everything being correct to this point. Final answer of 226 not (- 226) errors: $4 \times 4^{\frac{5}{2}} - 10 \times 4^2 + 4 \times 9^{\frac{5}{2}} - 10 \times 9^2 - 4 \times 4^{\frac{5}{2}} - 10 \times 4^2 = \pm 162$ obtains M1 M1 A0 (neither	l to see 9 ntil last lin nted until

$\frac{64}{1y-3} - \log_2 3 - 2\log_2 y = 1$	or $8^{2x} = 3$ and so $(2x)\log 8 = \log 3$ or $(2x) = \log_8 3$ $x = \frac{1}{2} \left(\frac{\log 3}{\log 8} \right)$ or $x = \frac{1}{2} (\log_8 3)$ o.e.	M1 dM1 A1 (3)
$\frac{\log 24}{\log 8} - 1 \text{ or } x = \frac{1}{2} (\log_8 24 - 1)$ 64 $1y - 3 -\log_2 3 - 2\log_2 y = 1$	$(2x) = \log_8 3$	dM1 A1
$\frac{\log 24}{\log 8} - 1 \text{ or } x = \frac{1}{2} (\log_8 24 - 1)$ 64 $1y - 3 -\log_2 3 - 2\log_2 y = 1$	$(2x) = \log_8 3$	dM1 A1
$\frac{64}{1y-3} - \log_2 3 - 2\log_2 y = 1$	$x = \frac{1}{2} \left(\frac{\log 3}{\log 8} \right)$ or $x = \frac{1}{2} (\log_8 3)$ o.e.	A1
$\frac{64}{1y-3} - \log_2 3 - 2\log_2 y = 1$		
,		+
1_{11} (2) 1_{12} (2) $1_{$		
$1y - 3 - 10g_2 - 10g_2 y = 1$		M1
$\frac{1y-3}{3y^2} = 1$ or $\log_2 \frac{(11y-y^2)}{y^2}$	(-3) = 1 + log ₂ 3 = 2.58496501	dM1
$\frac{1y-3}{3y^2} = \log_2 2$ or $\log_2 \frac{(11y-3)}{y^2}$	$=\log_2 6$ (allow awrt 6 if replaced by 6 later)	B1
$6y^2 - 11y + 3 = 0$ o.e. i.e. $6y^2 = 11$	1y-3 for example	A1
quadratic to give $y =$		ddM1
nd $\frac{3}{2}$ (need both- one should not be a	rejected)	A1
2		(6) [9]
M1: Takes logs and uses law of powers correctly. (Any log base may be used) Allow lack of brackets. dM1: Make x subject of their formula correctly (may evaluate the log before subtracting 1 and calculate e.g. $(1.528 - 1)/2$) A1: Allow answers which round to 0.264		
oplies power law of logarithms replaci	ing $2\log_2 y$ by $\log_2 y^2$	
dM1 : Applies quotient or product law of logarithms correctly to the three log terms including term in y^2 . (dependent on first M mark) or applies quotient rule to two terms and collects constants (allow		
		s this
Il be awarded before the second M ma	ark, and it is possible to score M1M0B1in some	cases)
be given for $\log_2 6 = 2.584962501$.	. or $2^{2.584962501} = 6$	
 A1: This or equivalent quadratic equation (does not need to be in this form but should be equation) ddM1: (dependent on the two previous M marks) Solves their quadratic equation following reasonable log work using factorising, completion of square, formula or implied by both answers correct. A1: Any equivalent correct form – need both answers- allow awrt 0.333 for the answer 1/3 *NB: If "=0" is missing from the equation but candidate continues correctly and obtains correct answers then allow the penultimate A1 to be implied (Allow use of <i>x</i> or other varable instead of <i>y</i> 		
	$\frac{1y - 3}{3y^2} = \log_2 2 \text{ or } \log_2 \frac{(11y - 3)}{y^2}$ $\frac{6y^2 - 11y + 3 = 0 \text{ o.e. i.e. } 6y^2 = 12$ quadratic to give $y =$ and $\frac{3}{2}$ (need both- one should not be respectively by the state of the stat	$\frac{1y - 3}{3y^2} = 1$ or $\log_2 \frac{(11y - 3)}{y^2} = 1 + \log_2 3 = 2.58496501$ $\frac{1y - 3}{3y^2} = \log_2 2$ or $\log_2 \frac{(11y - 3)}{y^2} = \log_2 6$ (allow awrt 6 if replaced by 6 later) $6y^2 - 11y + 3 = 0$ o.e. i.e. $6y^2 = 11y - 3$ for example quadratic to give $y =$ and $\frac{3}{2}$ (need both- one should not be rejected) kes logs and uses law of powers correctly. (Any log base may be used) Allow lack of fake x subject of their formula correctly (may evaluate the log before subtracting 1 ar e e.g. (1.528 -1)/2) ow answers which round to 0.264 pplies power law of logarithms replacing $2\log_2 y$ by $\log_2 y^2$ pplies quotient or product law of logarithms correctly to the three log terms including endent on first M mark) or applies quotient rule to two terms and collects constants (a fractions) $1 + \log_2 3$ on RHS is not sufficient – need $\log_2 6$ or 2.58 $t_2(11y - 3) = \log_2 3 + \log_2 y^2 + \log_2 2$ becoming $\log_2(11y - 3) = \log_2 6y^2$ les or uses $\log_2 2 = 1$ or $2^1 = 2$ at any point in the answer so may be given for $1y - 3) - \log_2 3 - 2\log_2 y = \log_2 2$ or for $\frac{(11y - 3)}{3y^2} = 2$, for example (Sometime: ill be awarded before the second M mark, and it is possible to score M1M0B1 in some be given for $\log_2 6 = 2.584962501$ or $2^{2.584962501} = 6$ s or equivalent quadratic equation (does not need to be in this form but should be equa (dependent on the two previous M marks) Solves their quadratic equation following r k using factorising, completion of square, formula or implied by both answers correct y equivalent correct form – need both answers- allow awrt 0.333 for the answer 1/3 "=0" is missing from the equation but candidate continues correctly and obtains correct then allow the penultimate A1 to be implied (Allow use of x or other varable instead

Question Number		Scheme	Ma	arks
Trufficer	Way 1: Divides by $\cos 3\theta$ to give	Or Way 2: Squares both sides, uses		
	$\tan 3\theta = \sqrt{3}$ so	$\cos^2 3\theta + \sin^2 3\theta = 1$, obtains		
8. (i)			M1	
	$(3\theta) = \frac{\pi}{3}$	$\cos 3\theta = \pm \frac{1}{2}$ or $\sin 3\theta = \pm \frac{\sqrt{3}}{2}$ so $(3\theta) = \frac{\pi}{3}$		
	5			
	Adds π or 2π to previous value of an	gle (to give $\frac{m}{3}$ or $\frac{m}{3}$)	M1	
	So $\theta = \frac{\pi}{4\pi}$	$\frac{7\pi}{9}$ (all three, no extra in range)	A1	(3)
(ii)(a)		7		(0)
(II)(a)	$4(1 - \cos^2 x) + \cos x = 4 - k$	Applies $\sin^2 x = 1 - \cos^2 x$	M1	
	Attempts to solve $4\cos^2 x - \cos x - k =$	= 0, to give $\cos x =$	dM1	l
	$1 + \sqrt{1 + 16k}$ 1	$\frac{1}{1-k}$		
	$\cos x = \frac{1 \pm \sqrt{1 + 16k}}{8}$ or $\cos x = \frac{1}{8} \pm \sqrt{\frac{1}{8}}$	$\frac{1}{64} + \frac{1}{4}$ or other correct equivalent	A1	(3)
	$1+\sqrt{49}$ 3			
(b)	$\cos x = \frac{1 \pm \sqrt{49}}{8} = 1 \text{ and } -\frac{3}{4}$ (see the	e note below if errors are made)	M1	
	Obtains two solutions from 0, 139, 22		dM1	l
	x = 0 and 139 and 221 (allow awrt 139 a	and 221) must be in degrees	A1	
				(3) [9]
I		Notes	1	
(i) M1 : Ob	ptains $\frac{\pi}{3}$. Allow $x = \frac{\pi}{3}$ or even $\theta = \frac{\pi}{3}$.	Need not see working here. May be implied by	$\theta = \frac{\pi}{9}$	in
		9 as decimals or $(3\theta) = 60$ or $\theta = 20$ as degree	es for	this
marl	· 1			
Do r	not allow $\tan 3\theta = -\sqrt{3}$ nor $\tan 3\theta = \pm \frac{1}{\sqrt{3}}$	=		
	٧÷	ver obtained. It is not dependent on the previous	mark	
(Ma	y be implied by final answer of $\theta = \frac{4\pi}{2}$	or $\frac{7\pi}{9}$). This mark may also be given for an	swers	as
	9 mals [4.19 or 7.33], or degrees (240 or	-		
	and all three correct answers in terms of π	·		
	ree correct answers implies M1M1A1			
	$=20^{\circ}, 80^{\circ}, 140^{\circ}$ earns M1M1A0 and			
		if brackets are missing e.g. $4 \times 1 - \cos^2 x$).		
	s must be awarded in (11) (a) for an expre Uses formula or completion of square to	ssion with k not after $k = 3$ is substituted. obtain $\cos x = \exp(\sin x)$		
dM1+)				
	ctorisation attempt is M0) A1: cao - awa	ard for their final simplified expression		
(Fac (b) M1 :	Either attempts to substitute $k = 3$ into t	heir answer to obtain two values for $\cos x$		
(Fac (b) M1 : Or r	Either attempts to substitute $k = 3$ into t estarts with $k = 3$ to find two values for	heir answer to obtain two values for $\cos x$ $\cos x$ (They cannot earn marks in ii(a) for this)	rraat	
(Fac (b) M1: Or re In be	Either attempts to substitute $k = 3$ into t estarts with $k = 3$ to find two values for oth cases they need to have applied \sin^2	heir answer to obtain two values for $\cos x$ $\cos x$ (They cannot earn marks in ii(a) for this) $x = 1 - \cos^2 x$ (brackets may be missing) and co		
(Fac (b) M1: Or re In be meth	Either attempts to substitute $k = 3$ into t estarts with $k = 3$ to find two values for oth cases they need to have applied \sin^2	heir answer to obtain two values for $\cos x$ $\cos x$ (They cannot earn marks in ii(a) for this)		
(Fac (b) M1: Or re In bo meth dM1: (A1: O	Either attempts to substitute $k = 3$ into t estarts with $k = 3$ to find two values for o oth cases they need to have applied \sin^2 nod for solving their quadratic (usual rule Obtains two correct values for <i>x</i> btains all three correct values in degree	heir answer to obtain two values for $\cos x$ $\cos x$ (They cannot earn marks in ii(a) for this) $x = 1 - \cos^2 x$ (brackets may be missing) and co	< -1 exces	

Question Number	Scheme	Marks
9. (a)	Either: (Cost of polishing top and bottom (two circles) is $3 \times 2\pi r^2$ or (Cost of polishing curved surface area is) $2 \times 2\pi rh$ or both - just need to see at least one of these products	B1
	Uses volume to give $(h =) \frac{75\pi}{\pi r^2}$ or $(h =) \frac{75}{r^2}$ (simplified) (if V is misread – see below)	B1ft
	$(C) = 6\pi r^{2} + 4\pi r \left(\frac{75}{r^{2}}\right)$ Substitutes expression for <i>h</i> into area or cost expression of form $Ar^{2} + Brh$	M1
	$C = 6\pi r^2 + \frac{300\pi}{r} \qquad \qquad *$	A1* (4)
(b)	$\left\{\frac{\mathrm{d}C}{\mathrm{d}r}\right\} = \frac{300\pi}{r^2} \text{or} 12\pi r - 300\pi r^{-2} \text{ (then isw)}$	M1 A1 ft
	$12\pi r - \frac{300\pi}{r^2} = 0$ so r^k = value where $k = \pm 2, \pm 3, \pm 4$	dM1
	Use cube root to obtain $r = \left(their \frac{300}{12}\right)^{\frac{1}{3}} (= 2.92)$ - allow $r = 3$, and thus $C =$	ddM1
	Then $C = awrt 483 \text{ or } 484$	A1cao (5)
(c)	$\left\{\frac{\mathrm{d}^2 C}{\mathrm{d}r^2}\right\} = \frac{12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}}{12\pi + \frac{600\pi}{r^3} > 0 \text{ so minimum}}$	B1ft (1)
		[10]
B1ft: (M1: Su A1*: H e n N.B. Cano	Inters $3 \times 2\pi r^2$ or states $2 \times 2\pi rh$ Obtains a correct expression for <i>h</i> in terms of <i>r</i> (ft only follows misread of <i>V</i>) Industry their expression for <i>h</i> into area or cost expression of form $Ar^2 + Brh$ and correct expression for <i>C</i> and achieves given answer in part (a) including " <i>C</i> =" or "Cost=" rrors seen such as <i>C</i> = area expression without multiples of (£)3 and (£)2 at any point. Cost a must be perfectly distinguished at all stages for this A mark. Ididates using Curved Surface Area = $\frac{2V}{r}$ - please send to review tempts to differentiate as evidenced by at least one term differentiated correctly	
		• •
	Correct derivative – allow $12\pi r - 300\pi r^{-2}$ then is wife the power is misinterpreted (ft only for dC	
	ets their $\frac{dC}{dr}$ to 0, and obtains r^k = value where $k = 2, 3$ or 4 (needs correct collection of poweriginal derivative supression – allow errors dividing by 12=)	vers of r
ddM1:	briginal derivative expression – allow errors dividing by 12π) Uses cube root to find <i>r</i> or see <i>r</i> = awrt 3 as evidence of cube root and substitutes into correct expression for <i>C</i> to obtain value for <i>C</i>	t
	Sinds correct expression for $\frac{d^2C}{dr^2}$ and deduces value of $\frac{d^2C}{dr^2} > 0$ so minimum (<i>r</i> may have been been been been been been been be	en wrong)
OR ch minir	necks gradient to left and right of 2.92 and shows gradient goes from negative to zero to positi	ve so

of graph) Only ft on misread of V for each ft mark (see below)

N..B. Some candidates have **misread** the volume as 75 instead of 75π . PTO for marking instruction.

Following this misread candidates cannot legitimately obtain the printed answer in part (a). Either they obtain $C = 6\pi r^2 + \frac{300}{r}$ or they "fudge" their working to appear to give the printed answer. The policy for a misread is to subtract 2 marks from A or B marks. In this case the A mark is to be subtracted from part (a) and the final A mark is to be subtracted from part (b) The maximum mark for part (a) following this misread is 3 marks. The award is B1 B1 M1 A0 as a maximum. (a) B1: as before B1: Uses volume to give $(h =) \frac{75}{-2}$ M1: (C) = $6\pi r^2 + 4\pi r \left(\frac{75}{\pi r^2}\right)$ A0: Printed answer is not obtained without error Most Candidates may then adopt the printed answer and gain up to full marks for the rest of the question so 9 of the 10 marks maximum in all. _____ Any candidate who proceeds with **their** answer $C = 6\pi r^2 + \frac{300}{r}$ may be awarded up to 4 marks in part (b). These are M1A1dM1ddM1A0 and then the candidate may also be awarded the B1 mark in part (c). So 8 of the 10 marks maximum in all. (b) M1 A1: $\left\{\frac{dC}{dr} = \right\} 12\pi r - \frac{300}{r^2}$ or $12\pi r - 300r^{-2}$ (then isw) dM1: $12\pi r - \frac{300}{r^2} = 0$ so r^k = value where $k = 2, 3 \text{ or } 4 \text{ or } 12\pi r - \frac{300}{r^2} = 0$ so r^k = value ddM1: Use **cube** root to obtain $r = \left(their \frac{300}{12\pi}\right)^{\frac{1}{3}}$ (=1.996) - allow r = 2, and thus $C = \dots$ must use $C = 6\pi r^2 + \frac{300}{r}$ A0: Cannot obtain C = 483 or 484(c) B1: $\left\{ \frac{d^2 C}{dr^2} = \right\} 12\pi + \frac{600}{r^3} > 0$ so minimum OR checks gradient to left and right of 1.966 and shows gradient goes from negative to zero to positive so minimum OR checks value of C to left and right of 1.966 and shows that C > 225.4 so deduces minimum (i.e. uses shape of graph)

There is an example in Practice of this misread.

www.yesterdaysmathsexam.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom