Section A: Statistics

Qu	Scheme	Marks	AO
1 (a)	Positive (correlation)	B1	1.2
(b)	Every extra point gives $£ 4.5(0)$ more on pay (o.e.)		3.4
(c)	e.g. For points <11 it would give pay <0 which is ridiculo	B1 (1)	2.4
		(3 m	
	Notes		
(a)	B1 for "positive". Allow an interpretation e.g. "as points increase pay increases" is B1 Read whole answer: contradictory comments such as "positive correlation, as points increase pay decreases" scores B0		
(b)	B1 for any correct comment conveying idea of £s per point and including a correct value; must have idea of rate. Can condone missing $£$ sign. Accept 4.5 e.g. "every 10 points earns an extra (or increase) of $£ 45$ " is B1 BUT "every point earns $£ 4.5(0)$ " is B0 doesn't have idea of rate		
(c)	B1 for a suitable comment mentioning "points" or "pay" (o.e. or commenting on "small sample" or "range of points" us The following examples would score B1 Can say that n points (for $n<10 . \dot{4}$) would give negative p Any comment suggesting that some jobs would end up with Don't know the range of points used to find the regression A small sample of size 8 may not be representative to cove B0 for a focus on "qualifications" or "hours" worked only The following examples would score B0 Some jobs require no (or low) skills or qualifications (need	.g. "amo d to find so not s negative ne all jobs negative	unt") line aitable pay pay)

Question	Scheme	Marks	AOs
1(a)	Label each year group	B1	1.1b
	Use random numbers to select a ...	B1	1.1b
	Simple random sample of 24 Year 12s and 16 Year 13s.	B1	1.1b
		(3)	
(b)	Increase by 2.8 marks	B1	3.4
		(1)	
(c)	e.g. 'the best performance is predicted for the students who never wake up’	B1	3.5b
		(1)	
(5 marks)			
Notes			
(a)	B1: for a suitable numbered/labelled/ordered(o.e.) list/database/register(o.e.) for each year group. Condone poor numbering but if just one list, then the Year 12s must be distinguishable from the Year 13s		
	B1: for use of random numbers/sample/selection to choose students		
	B1: for 24 Year 12s, and 16 Year 13s		
Note:	A description of a systematic sample: only allow access to the first mark and therefore may score maximum B1B0B0		
(b)	B1: Using the gradient of the regression equation must include increase(o.e.) and 2.8 'Increase by approximately 3 marks' is B 0 but isw if 2.8 is seen $5.6 \div 2$ is not sufficient		
(c)	B1: for any suitable limitation of the model e.g. the idea that the longer you sleep the better performance in the test or only valid between 0 and 24 hours (within range of the data) or only applicable to the amount of sleep the night before the test or only takes sleep into consideration/does not include other variables (factors) or cannot score below 26.1 marks on the test or the model might not be linear over the entire range or the model might predict more than the maximum mark B0: e.g. might not be correlation between s and p or individual student performance may vary		

Question		Scheme	Marks	AOs
2(a)		0 to 500 m	B1	1.2
			(1)	
(b)		$1100+1600+1.5 \times 1600$ [$=5100$]	M1	2.1
		$5300>5100$ therefore outlier	A1	1.1b
			(2)	
(c)		As the humidity increases the mean visibility decreases	B1	2.4
			(1)	
(d)		(Hours of) sunshine	B1	2.2b
			(1)	
(5 marks)				
Notes				
(a)	B1:	For realising it is the maximum distance and distance given with correct units. Allow 0 to 50 dm or $<500 \mathrm{~m}$ or $<50 \mathrm{dm}$		
(b)	M1:	Attempt to find Q_{3} and the upper limit		
	A1:	5100 , if a value for the point is stated it must be above 5100 otherwise it is A0. For a statement comparing and conclusion it is an outlier or it is above $\mathrm{Q}_{3}+1.5 \mathrm{IQR}$. Allow accept the point circled is greater than 5100 oe		
(c)	B1:	For a suitable interpretation of a negative correlation mentioning humidity and visibility		
(d)	B1:	A correct deduction that the unlabelled variable is the hours of sunshine. Condone missing hours. Do not allow if more than one variable given. Must be quantative variable Not cloud cover since values bigger than 8 Not wind speed since values not integers Not daily mean temperature since mean temperature near to zero are unlikely in June		

Question	Scheme	Marks	AOs
4(a)	$\mathrm{IQR}=2.3$ and $20.6 \gg 2.4+1.5 \times 2.3(=5.85)$ (Compare correct values)	B1	1.1b
		(1)	
(b)(i)	e.g. It is a piece of data and we should consider all the data o.e.	B1	2.4
(ii)	e.g. It is an extreme value and could unduly influence the analysis or It could be a mistake	B1	2.4
		(2)	
(c)	e.g. "as humidity increases rainfall increases"	B1	2.2b
		(1)	
(d)	e.g. a 10% increase in humidity gives rise to a 1.5 mm increase in rainfall or represents 0.15 mm of rainfall per percentage of humidity	B1	3.4
		(1)	
(e)(i)	Not a good method since only uses 11 days from one location in one month	B1	2.4
(ii)	e.g. She should use data from more of the UK locations and more of the months or using a spreadsheet or computer package she could use all of the available UK data	B1	2.4
		(2)	
(7 marks)			

