Mark Scheme (Results) Summer 2010

GCE

GCE Statistics S2 (6684/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA024768
All the material in this publication is copyright
© Edexcel Ltd 2010
:

J une 2010
 Statistics S2 6684
 Mark Scheme

Question Number	Scheme	Marks
Q3	Method 1 Method 2 Method 3 $\mathrm{P}(X>6)=\frac{1}{6}$ $\mathrm{P}(4<X<6)=\frac{1}{3}$ $\mathrm{P}(X>6)=\frac{1}{6}$ $\mathrm{P}(X<4)=\frac{1}{2}$ $\mathrm{Y} \sim \mathrm{U}[3,9] \mathrm{P}(Y>6)=\frac{1}{2}$ total $=\frac{1}{6}+\frac{1}{2}=\frac{2}{3}$ $1-\frac{1}{3}=\frac{2}{3}$ total $=\frac{1}{6}+\frac{1}{2}=\frac{2}{3}$	B1 M1 A1 M1dep B A1 (5)
	Notes Methods 1 and 2 B1 for 6 and 4 (allow if seen on a diagram on x-axis) M1 for $\mathrm{P}(X>6)$ or $\mathrm{P}(6<X<7)$; or $\mathrm{P}(X<4)$ or $\mathrm{P}(1<X<4)$; or $\mathrm{P}(4<X<6)$ Allow \leq and \geq signs A1 $\frac{1}{6}$;or $\frac{1}{2} ; \frac{1}{3}$ must match the probability statement M1 for adding their " $\mathrm{P}(X>6)$ " and their " $\mathrm{P}(X<4)$ " or 1 - their " $\mathrm{P}(4<X<6)$ " dep on getting first B mark A1 cao $\frac{2}{3}$ Method $3 \mathbf{Y} \sim \mathbf{U}[3,9]$ B1 for 6 with $\mathrm{U}[1,7]$ and 6 with $\mathrm{U}[3,9]$ M1 for $\mathrm{P}(X>6)$ or $\mathrm{P}(6<X<7)$ or $\mathrm{P}(6<Y<9)$ A1 $\frac{1}{6}$; or $\frac{1}{2}$; must match the probability statement M1 for adding their " $\mathrm{P}(X>6)$ " and their " $\mathrm{P}(Y>6)$ " dep on getting first B mark A1 cao $\frac{2}{3}$	

Question Number	Scheme	Marks
Q4 (a)	$\begin{aligned} & \frac{4}{9}\left(m^{2}+2 m-3\right)=0.5 \\ & m^{2}+2 m-4.125=0 \\ & m=\frac{-2 \pm \sqrt{4+16.5}}{2} \\ & m=1.26,-3.264 \\ &\text { (median }=) 1.26 \end{aligned}$	$\begin{array}{ll}\text { M1 } \\ \text { M1 } \\ \text { A1 } & \\ \end{array}$
(b)	Differentiating $\frac{\mathrm{d}\left(\frac{4}{9}\left(x^{2}+2 x-3\right)\right)}{\mathrm{d} x}=\frac{4}{9}(2 x+2)$	M1 A1
	$\mathrm{f}(x)=\left\{\begin{array}{cc} \frac{8}{9}(x+1) & 1 \leq x \leq 1.5 \\ 0 & \text { otherwise } \end{array}\right.$	B1ft (3)
(c)	$\begin{aligned} \mathrm{P}(X \geq 1.2) & =1-\mathrm{F}(1.2) \\ & =1-0.3733 \end{aligned}$	M1
	$=\frac{47}{75}, 0.6267$	A1 (2)
	0.627	
(d)	$(0.6267)^{4}=0.154$ awrt 0.154 or 0.155	M1 A1 (2)
		[10]
	Notes	
(a)	M1 putting $\mathrm{F}(x)=0.5$ M1 using correct quadratic formula. If use calc need to get 1.26 (384...) A1 cao 1.26 must reject the other root.	
(b)	If they use Trial and improvement they have to get the correct answer to gain the s M1 attempt to differentiate. At least one $x^{n} \rightarrow x^{n-1}$ A1 correct differentiation B1 must have both parts- follow through their $\mathrm{F}^{\prime}(x)$ Condone $<$	M mark.
(c)	M1 finding/writing $1-\mathrm{F}(1.2)$ may use/write $\int_{1.2}^{1.5} \frac{8}{9}(x+1) \mathrm{d} x$ or $1-\int_{1}^{1.2} \frac{8}{9}(x+1) \mathrm{d} x$ or $\int_{1.2}^{1.5}$ "their $\mathrm{f}(x)$ " $\mathrm{d} x$. Condone missing $\mathrm{d} x$	
(d)	A1 awrt 0.627 M1 (c) ${ }^{4}$ If expressions are not given you need to check the calculation is correct to 2 sf A1 awrt 0.154 or 0.155	

Question Number	Scheme Marks
Q5 (a) (b) (i) (ii) (c)	
(a) (b) (i) (ii) (c)	Notes B1 Any one of randomly/independently/singly/constant rate. Must have context of connection/logging on/fail B1 Writing or using $\operatorname{Po}(8)$ in (i) or (ii) M1 for writing or finding $\mathrm{P}(X=0)$ A1 awrt 0.0003 M1 for writing or finding $1-\mathrm{P}(X \leq 3)$ A1 awrt 0.958 B1 both hypotheses correct. Must use λ or μ M1 identifying normal A1 using or seeing mean and variance of 48 These first two marks may be given if the following are seen in the standardisation formula : 48 and $\sqrt{48}$ or awrt 6.93 M1 for attempting a continuity correction (Method 1: $60 \pm 0.5 /$ Method 2: $x \pm 0.5$) M1 for standardising using their mean and their standard deviation and using either Method 1 [59.5, 60 or 60.5. accept \pm z.] Method 2 [$(x \pm 0.5)$ and equal to a $\pm z$ value) A1 correct z value awrt ± 1.66 or $\pm \frac{59.5-48}{\sqrt{48}}$, or $\frac{x-0.5-48}{\sqrt{48}}=1.6449$ A1 awrt 3 sig fig in range $0.0484-0.0485$, awrt 59.9 M1 for "reject H_{0} " or "significant" maybe implied by "correct contextual comment" If one tail hypotheses given follow through "their prob" and $0.05, p<0.5$ If two tail hypotheses given follow through "their prob" with $0.025, p<0.5$ If one tail hypotheses given follow through "their prob" and $0.95, p>0.5$ If two tail hypotheses given follow through "their prob" with $0.975, p>0.5$ If no H_{1} given they get M0 A1 ft correct contextual statement followed through from their prob and H_{1}. need the words number of failed connections/log ons has increased o.e. Allow "there are more failed connections" NB A correct contextual statement alone followed through from their prob and H_{1} gets M1 A1

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA024768 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

