www. yesterdaysmathsexam.com

Question	Scheme	Marks	AOs
15(i)	$\begin{aligned} & n=1,2^{3}=8,3^{1}=3,(8>3) \\ & n=2,3^{3}=27,3^{2}=9, \quad(27>9) \\ & n=3,4^{3}=64,3^{3}=27, \quad(64>27) \\ & n=4,5^{3}=125,3^{4}=81,(125>81) \end{aligned}$	M1	2.1
	So if $n \leqslant 4, n \in \mathbb{N}$ then $(n+1)^{3}>3^{n}$	A1	2.4
		(2)	
(ii)	Begins the proof by negating the statement. "Let m be odd " or "Assume m is not even"	M1	2.4
	Set $m=(2 p \pm 1)$ and attempt $m^{3}+5=(2 p \pm 1)^{3}+5=\ldots$	M1	2.1
	$=8 p^{3}+12 p^{2}+6 p+6$ AND deduces even	A1	2.2a
	Completes proof which requires reason and conclusion - reason for $8 p^{3}+12 p^{2}+6 p+6$ being even - acceptable statement such as "this is a contradiction so if $m^{3}+5$ is odd then m must be even"	A1	2.4
		(4)	
(6 marks)			
Notes			

(i)

M1: A full and rigorous argument that uses all of $n=1,2,3$ and 4 in an attempt to prove the given
result. Award for attempts at both $(n+1)^{3}$ and 3^{n} for ALL values with at least 5 of the 8 values correct.
There is no requirement to compare their sizes, for example state that $27>9$
Extra values, say $n=0$, may be ignored
A1: Completes the proof with no errors and an appropriate/allowable conclusion.
This requires

- all the values for $n=1,2,3$ and 4 correct. Ignore other values
- all pairs compared correctly
- a minimal conclusion. Accept \checkmark or hence proven for example
(ii)

M1: Begins the proof by negating the statement. See scheme
This cannot be scored if the candidate attempts m both odd and even
M1: For the key step in setting $m=2 p \pm 1$ and attempting to expand $(2 p \pm 1)^{3}+5$
Award for a 4 term cubic expression.
A1: Correctly reaches $(2 p+1)^{3}+5=8 p^{3}+12 p^{2}+6 p+6$ and states even.
Alternatively reaches $(2 p-1)^{3}+5=8 p^{3}-12 p^{2}+6 p+4$ and states even.
A1: A full and complete argument that completes the contradiction proof. See scheme.
(1) A reason why the expression $8 p^{3}+12 p^{2}+6 p+6$ or $8 p^{3}-12 p^{2}+6 p+4$ is even

Acceptable reasons are

- all terms are even
- sight of a factorised expression E.g. $8 p^{3}-12 p^{2}+6 p+4=2\left(4 p^{3}-6 p^{2}+3 p+2\right)$
(2) Acceptable concluding statement

Acceptable concluding statements are

- "this is a contradiction, so if $m^{3}+5$ is odd then m is even"
- "this is contradiction, so proven."
- "So if $m^{3}+5$ is odd them m is even"
S.C If the candidate misinterprets the demand and does not use proof by contradiction but states a counter example to the statement "if $m^{3}+5$ is odd then m must be even" such as when $m=\sqrt[3]{2}$ then they can score special case mark B1

Question	Scheme			Marks	AOs
3	Statement: "If m and n are irrational numbers, where $m \neq n$, then $m n$ is also irrational."				
(a)	E.g. $m=\sqrt{3}, n=\sqrt{12}$			M1	1.1b
	$\begin{aligned} & \qquad\{m n=\} \quad(\sqrt{3})(\sqrt{12})=6 \\ & \Rightarrow \text { statement untrue or } 6 \text { is not irrational or } 6 \text { is rational } \end{aligned}$			A1	2.4
				(2)	
(b)(i), (ii) Way 1			V shaped graph \{reasonably symmetrical about the y-axis with vertical interpret $(0,3)$ or 3 stated or marked on the positive y-axis	B1	1.1b
			Superimposes the graph of $y=\|x+3\|$ on top of the graph of $y=\|x\|+3$	M1	3.1a
	the graph of $y=\|x\|+3$ is either the same or above the graph of $y=\|x+3\|$ \{for corresponding values of $x\}$ or when $x \geq 0$, both graphs are equal (or the same) when $x<0$, the graph of $y=\|x\|+3$ is above the graph of $y=\|x+3\|$			A1	2.4
				(3)	
(b)(ii) Way 2	Reason 1 When $x \geq 0,\|x\|+3=\|x+3\|$ Reason 2 When $x<0,\|x\|+3>\|x+3\|$		y one of Reason 1 or Reason 2	M1	3.1a
			Both Reason 1 and Reason 2	A1	2.4

(5 marks)

Notes for Question 3	
(a)	
M1:	States or uses any pair of different numbers that will disprove the statement. E.g. $\sqrt{3}, \sqrt{12} ; \sqrt{2}, \sqrt{8} ; \sqrt{5},-\sqrt{5} ; \frac{1}{\pi}, 2 \pi ; 3 \mathrm{e}, \frac{4}{5 \mathrm{e}}$;
A1:	Uses correct reasoning to disprove the given statement, with a correct conclusion
Note:	Writing (3e) $\left(\frac{4}{5 \mathrm{e}}\right)=\frac{12}{5} \Rightarrow$ untrue is sufficient for M1A1
(b)(i)	
B1:	See scheme
(b)(ii)	
M1:	For constructing a method of comparing $\|x\|+3$ with $\|x+3\|$. See scheme.
A1:	Explains fully why $\|x\|+3 \geq\|x+3\|$. See scheme.
Note:	Do not allow either $x>0,\|x\|+3 \geq\|x+3\|$ or $x \geq 0,\|x\|+3 \geq\|x+3\|$ as a valid reason
Note	$x=0$ (or where necessary $x=-3$) need to be considered in their solutions for A1
Note:	Do not allow an incorrect statement such as $x \leq 0,\|x\|+3>\|x+3\|$ for A1

Question		Scheme	Marks	AOs
9		$\frac{\mathrm{d}}{\mathrm{d} \theta}(\cos \theta)=-\sin \theta$; as $h \rightarrow 0, \frac{\sin h}{h} \rightarrow 1$ and $\frac{\cos h-1}{h} \rightarrow 0$		
		$\frac{\cos (\theta+h)-\cos \theta}{h}$	B1	2.1
		$\underline{\cos \theta \cos h-\sin \theta \sin h-\cos \theta}$	M1	1.1b
		h	A1	1.1b
		$=-\frac{\sin h}{h} \sin \theta+\left(\frac{\cos h-1}{h}\right) \cos \theta$		
		$\rightarrow 0, \quad-\frac{\sin h}{h} \sin \theta+\left(\frac{\cos h-1}{h}\right) \cos \theta \rightarrow-1 \sin \theta+0 \cos \theta$	dM1	2.1
		$\text { so } \frac{\mathrm{d}}{\mathrm{~d} \theta}(\cos \theta)=-\sin \theta \text { * }$	A1*	2.5
			(5)	
(5 marks)				
Notes for Question 9				
B1:	Gives the correct fraction such as $\frac{\cos (\theta+h)-\cos \theta}{h}$ or $\frac{\cos (\theta+\delta \theta)-\cos \theta}{\delta \theta}$ Allow $\frac{\cos (\theta+h)-\cos \theta}{(\theta+h)-\theta}$ o.e. Note: $\cos (\theta+h)$ or $\cos (\theta+\delta \theta)$ may be expanded			
M1:	Uses the compound angle formula for $\cos (\theta+h)$ to give $\cos \theta \cos h \pm \sin \theta \sin h$			
A1:	Achieves $\frac{\cos \theta \cos h-\sin \theta \sin h-\cos \theta}{h}$ or equivalent			
dM1:	dependent on both the B and M marks being awarded Complete attempt to apply the given limits to the gradient of their chord			
Note:	They must isolate $\frac{\sin h}{h}$ and $\left(\frac{\cos h-1}{h}\right)$, and replace $\frac{\sin h}{h}$ with 1 and replace $\left(\frac{\cos h-1}{h}\right)$ with 0			
A1*:	cso. Uses correct mathematical language of limiting arguments to prove $\frac{\mathrm{d}}{\mathrm{d} \theta}(\cos \theta)=-\sin \theta$			
Note:	Acceptable responses for the final A mark include: - $\frac{\mathrm{d}}{\mathrm{d} \theta}(\cos \theta)=\lim _{h \rightarrow 0}\left(-\frac{\sin h}{h} \sin \theta+\left(\frac{\cos h-1}{h}\right) \cos \theta\right)=-1 \sin \theta+0 \cos \theta=-\sin \theta$ - Gradient of chord $=-\frac{\sin h}{h} \sin \theta+\left(\frac{\cos h-1}{h}\right) \cos \theta$. As $h \rightarrow 0$, gradient of chord tends to the gradient of the curve, so derivative is $-\sin \theta$ - Gradient of chord $=-\frac{\sin h}{h} \sin \theta+\left(\frac{\cos h-1}{h}\right) \cos \theta$. As $h \rightarrow 0$, gradient of curve is $-\sin \theta$			
Note:	Give final A0 for the following example which shows no limiting arguments: when $h=0, \frac{\mathrm{~d}}{\mathrm{~d} \theta}(\cos \theta)=-\frac{\sin h}{h} \sin \theta+\left(\frac{\cos h-1}{h}\right) \cos \theta=-1 \sin \theta+0 \cos \theta=-\sin \theta$			
Note:	Do not allow the final A1 for stating $\frac{\sin h}{h}=1$ or $\left(\frac{\cos h-1}{h}\right)=0$ and attempting to apply these			
Note:	In this question $\delta \theta$ may be used in place of h			
Note:	Condone $\mathrm{f}^{\prime}(\theta)$ where $\mathrm{f}(\theta)=\cos \theta$ or $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ where $y=\cos \theta$ used in place of $\frac{\mathrm{d}}{\mathrm{d} \theta}(\cos \theta)$			

Question 10

General points for marking question 10 (i):

- Students who just try random numbers in part (i) are not going to score any marks.
- Students can mix and match methods. Eg you may see odd numbers via logic and even via algebra
- Students who state $4 m^{2}+2$ cannot be divided by (instead of is not divisible by) cannot be awarded credit for the accuracy/explanation marks, unless they state correctly that $4 m^{2}+2$ cannot be divided by 4 to give an integer.
- Students who write $n^{2}+2=4 k \Rightarrow k=\frac{1}{4} n^{2}+\frac{1}{2}$ which is not a whole number gains no credit unless they then start to look at odd and even numbers for instance
- Proofs via induction usually tend to go nowhere unless they proceed as in the main scheme
- Watch for unusual methods that are worthy of credit (See below)
- If the final conclusion is $n \in \mathbb{R}$ then the final mark is withheld. $n \in \mathbb{Z}^{+}$is correct

Watch for methods that may not be in the scheme that you feel may deserve credit.
If you are uncertain of a method please refer these up to your team leader.
Eg 1. Solving part (i) by modulo arithmetic.

All $n \in \mathbb{N} \bmod 4$	0	1	2	3
All $n^{2} \in \mathbb{N} \bmod 4$	0	1	0	1
All $n^{2}+2 \in \mathbb{N} \bmod 4$	2	3	2	3

Hence for all $n, n^{2}+2$ is not divisible by 4 .

Question 10 (i)	Scheme	Marks	AOs

Notes: Note that M0 A0 M1 A1 and M0 A0 M1 A0 are not possible due to the way the scheme is set up (i)

M1: Awarded for setting up the proof for either the even or odd numbers.
A1: Concludes correctly with a reason why $n^{2}+2$ cannot be divisible by 4 for either n odd or even.
dM1: Awarded for setting up the proof for both even and odd numbers
A1: Fully correct proof with valid explanation and conclusion for all n

Example of an algebraic proof

For $n=2 m, \quad n^{2}+2=4 m^{2}+2$	M 1	2.1
Concludes that this number is not divisible by 4 (as the explanation is trivial)	A 1	1.1 b
For $n=2 m+1, \quad n^{2}+2=(2 m+1)^{2}+2=\ldots$	FYI $\left(4 m^{2}+4 m+3\right)$	2.1
Correct working and concludes that this is a number in the 4 times table add 3 so cannot be divisible by 4 or writes $4\left(m^{2}+m\right)+3 \ldots \ldots A N D ~ s t a t e s ~ h e n c e ~$ true for all	$\mathrm{A} 1 *$	2.4
	$\mathbf{(4)}$	

Example of a very similar algebraic proof

For $n=2 m, \quad \frac{4 m^{2}+2}{4}=m^{2}+\frac{1}{2}$	M 1	2.1
Concludes that this is not divisible by 4 due to the $\frac{1}{2}$ (A suitable reason is required)	A 1	1.1 b
For $n=2 m+1, \frac{n^{2}+2}{4}=\frac{4 m^{2}+4 m+3}{4}=m^{2}+m+\frac{3}{4}$	dM1	2.1
Concludes that this is not divisible by 4 due to the $\frac{3}{4}$ divisible by 4\ldots AND states $\ldots \ldots . \quad$ hence for all $n, n^{2}+2$ is not	A1*	2.4
	(4)	

Example of a proof via logic

When n is odd, "odd \times odd" $=$ odd	M1	2.1
so $n^{2}+2$ is odd, so (when n is odd) $n^{2}+2$ cannot be divisible by 4	A1	1.1 b
When n is even, it is a multiple of 2, so "even \times even" is a multiple of 4	dM1	2.1
Concludes that when n is even $n^{2}+2$ cannot be divisible by 4 because n^{2} is divisible by 4....AND STATEStrues for all n.	A1*	2.4
	(4)	

Example of proof via contradiction

Sets up the contradiction 'Assume that $n^{2}+2$ is divisible by $4 \Rightarrow n^{2}+2=4 k$ '	M1	2.1
$\Rightarrow n^{2}=4 k-2=2(2 k-1)$ and concludes even Note that the M mark (for setting up the contradiction must have been awarded)	A1	1.1b
States that n^{2} is even, then n is even and hence n^{2} is a multiple of 4	dM1	2.1
Explains that if n^{2} is a multiple of 4 then $n^{2}+2$ cannot be a multiple of 4 and hence divisible by 4 Hence there is a contradiction and concludes Hence true for all n.	A1*	2.4
	(4)	

A similar proof exists via contradiction where
A1: $n^{2}=2(2 k-1) \Rightarrow n=\sqrt{2} \times \sqrt{2 k-1}$
dM1: States that $2 k-1$ is odd, so does not have a factor of 2 , meaning that n is irrational

Question	Scheme	Marks	AOs
16	Sets up the contradiction and factorises: There are positive integers p and q such that $(2 p+q)(2 p-q)=25$	M1	2.1
	If true then $\quad$$2 p+q=25$ $2 p-q=1$or $\quad$$2 p+q=5$ $2 p-q=5$ Award for deducing either of the above statements	M1	2.2a
	Solutions are $p=6.5, q=12 \quad$ or $p=2.5, q=0$ Award for one of these	A1	1.1b
	This is a contradiction as there are no integer solutions hence there are no positive integers p and q such that $4 p^{2}-q^{2}=25$	A1	2.1
		(4)	
	(4 marks)		
Notes:			

M1: For the key step in setting up the contradiction and factorising
M1: For deducing that for p and q to be integers then either $\begin{array}{cc}2 p+q=25 \\ 2 p-q=1\end{array}$ or $\begin{gathered}2 p+q=5 \\ 2 p-q=5\end{gathered}$ must be true.

Award for deducing either of the above statements.

You can ignore any reference to $\begin{aligned} & 2 p+q=1 \\ & 2 p-q=25\end{aligned}$ as this could not occur for positive p and q.
A1: For correctly solving one of the given statements,
For $\begin{aligned} & 2 p+q=25 \\ & 2 p-q=1\end{aligned}$ candidates only really need to proceed as far as $p=6.5$ to show the contradiction.
$2 p+q=5$
For $\begin{aligned} & 2 p+q=5 \\ & 2 p-q=5\end{aligned}$ candidates only really need to find either p or q to show the contradiction.
$2 p+q=5$
Alt for $\begin{aligned} & 2 p+q=5\end{aligned}$ candidates could state that $2 p+q \neq 2 p-q$ if p, q are positive integers.
A1: For a complete and rigorous argument with both possibilities and a correct conclusion.

Question	Scheme	Marks	AOs
16 Alt 1	Sets up the contradiction, attempts to make q^{2} or $4 p^{2}$ the subject and states that either $4 p^{2}$ is even $(*)$, or that $q^{2}($ or $q)$ is odd $\left({ }^{* *}\right)$ Either There are positive integers p and q such that $4 p^{2}-q^{2}=25 \Rightarrow q^{2}=4 p^{2}-25 \text { with } * \text { or } * *$ Or There are positive integers p and q such that $4 p^{2}-q^{2}=25 \Rightarrow 4 p^{2}=q^{2}+25 \text { with } * \text { or } * *$	M1	2.1
	Sets $q=2 n \pm 1$ and expands $(2 n \pm 1)^{2}=4 p^{2}-25$	M1	2.2a
	Proceeds to an expression such as $\begin{aligned} & 4 p^{2}=4 n^{2}+4 n+26=4\left(n^{2}+n+6\right)+2 \\ & 4 p^{2}=4 n^{2}+4 n+26=4\left(n^{2}+n\right)+\frac{13}{2} \\ & p^{2}=n^{2}+n+\frac{13}{2} \end{aligned}$	A1	1.1b
	States This is a contradiction as $4 p^{2}$ must be a multiple of 4 Or p^{2} must be an integer And concludes there are no positive integers p and q such that $4 p^{2}-q^{2}=25$	A1	2.1
		(4)	

Alt 2

An approach using odd and even numbers is unlikely to score marks.
To make this consistent with the Alt method, score
M1: Set up the contradiction and start to consider one of the cases below where q is odd, $m \neq n$.
Solutions using the same variable will score no marks.
M1: Set up the contradiction and start to consider BOTH cases below where q is odd, $m \neq n$.
No requirement for evens
A1: Correct work and deduction for one of the two scenarios where q is odd
A1: Correct work and deductions for both scenarios where q is odd with a final conclusion

Options	Example of Calculation	Deduction
p (even) q (odd)	$4 p^{2}-q^{2}=4 \times(2 m)^{2}-(2 n+1)^{2}=16 m^{2}-4 n^{2}-4 n-1$	One less than a multiple of 4 so cannot equal 25
p (odd) q (odd)	$4 p^{2}-q^{2}=4 \times(2 m+1)^{2}-(2 n+1)^{2}=16 m^{2}+16 m-4 n^{2}-4 n+3$	Three more than a multiple of 4 so cannot equal 25

Question	Scheme	Marks	AOs
16	NB any natural number can be expressed in the form: $3 k, 3 k+1,3 k+2$ or equivalent e.g. $3 k-1,3 k, 3 k+1$		
	Attempts to square any two distinct cases of the above	M1	3.1a
	Achieves accurate results and makes a valid comment for any two of the possible three cases: E.g. $(3 k)^{2}=9 k^{2}\left(=3 \times 3 k^{2}\right)$ is a multiple of 3	A1 M1 on EPEN	1.1b
	$(3 k+1)^{2}=9 k^{2}+6 k+1=3 \times\left(3 k^{2}+2 k\right)+1$ is one more than a multiple of 3 $\begin{aligned} & (3 k+2)^{2}=9 k^{2}+12 k+4=3 \times\left(3 k^{2}+4 k+1\right)+1 \\ & \left(\text { or }(3 k-1)^{2}=9 k^{2}-6 k+1=3 \times\left(3 k^{2}-2 k\right)+1\right) \end{aligned}$ is one more than a multiple of 3		
	Attempts to square in all 3 distinct cases. E.g. attempts to square $3 k, 3 k+1,3 k+2$ or e.g. $3 k-1,3 k, 3 k+1$		2.1
	Achieves accurate results for all three cases and gives a minimal conclusion (allow tick, QED etc.)	Al	2.4
		(4)	
(4 marks)			

