Question	Scheme	Marks	AOs
15(i)	$n = 1, 2^{3} = 8, 3^{1} = 3, (8 > 3)$ $n = 2, 3^{3} = 27, 3^{2} = 9, (27 > 9)$	M1	2.1
	$n = 3, 4^3 = 64, 3^3 = 27, (64 > 27)$ $n = 4, 5^3 = 125, 3^4 = 81, (125 > 81)$	1411	2.1
	So if $n \leq 4, n \in \mathbb{N}$ then $(n+1)^3 > 3^n$	A1	2.4
		(2)	
(ii)	Begins the proof by negating the statement. "Let <i>m</i> be odd " or "Assume <i>m</i> is not even"	M1	2.4
	Set $m = (2p \pm 1)$ and attempt $m^3 + 5 = (2p \pm 1)^3 + 5 =$	M1	2.1
	$= 8p^3 + 12p^2 + 6p + 6$ AND deduces even	A1	2.2a
	 Completes proof which requires reason and conclusion reason for 8p³ + 12p² + 6p + 6 being even acceptable statement such as "this is a contradiction so if m³ + 5 is odd then m must be even" 	A1	2.4
		(4)	
(6 marks)			marks)
Notes			

www.yesterdaysmathsexam.com

(i)

M1: A full and rigorous argument that uses all of n = 1, 2, 3 and 4 in an attempt to prove the given result. Award for attempts at both $(n + 1)^3$ and 3^n for ALL values with at least 5 of the 8 values correct. There is no requirement to compare their sizes, for example state that 27 > 9

Extra values, say n = 0, may be ignored

- A1: Completes the proof with no errors and an appropriate/allowable conclusion. This requires
 - all the values for n = 1, 2, 3 and 4 correct. Ignore other values
 - all pairs compared correctly
 - a minimal conclusion. Accept \checkmark or hence proven for example
- (ii)
- M1: Begins the proof by negating the statement. See scheme

This cannot be scored if the candidate attempts m both odd and even

- M1: For the key step in setting $m = 2p \pm 1$ and attempting to expand $(2p \pm 1)^3 + 5$ Award for a 4 term cubic expression.
- A1: Correctly reaches $(2p + 1)^3 + 5 = 8p^3 + 12p^2 + 6p + 6$ and states even. Alternatively reaches $(2p - 1)^3 + 5 = 8p^3 - 12p^2 + 6p + 4$ and states even.
- A1: A full and complete argument that completes the contradiction proof. See scheme.

(1) A reason why the expression $8p^3 + 12p^2 + 6p + 6$ or $8p^3 - 12p^2 + 6p + 4$ is even Acceptable reasons are

- all terms are even
- sight of a factorised expression E.g. $8p^3 12p^2 + 6p + 4 = 2(4p^3 6p^2 + 3p + 2)$
- (2) Acceptable concluding statement

Acceptable concluding statements are

- "this is a contradiction, so if $m^3 + 5$ is odd then *m* is even"
- "this is contradiction, so proven."
- "So if $m^3 + 5$ is odd them *m* is even"

S.C If the candidate misinterprets the demand and does not use proof by contradiction but states a

counter example to the statement "if $m^3 + 5$ is odd then *m* must be even" such as when $m = \sqrt[3]{2}$ then they can score special case mark B1

www.yesterdaysmathsexam.com

Questi	on Sch	ieme	Marks	AOs
3	Statement: "If <i>m</i> and <i>n</i> are in	rational numbers, where $m \neq n$,		
(a)	E a m	$E = \frac{1}{2} \frac{1}{2} = \frac{1}{2}$		1 1 h
(a)		$L.g. m = \sqrt{3}, n = \sqrt{12}$		1.10
	$\{mn=\}$ ($\sqrt{3}\left(\sqrt{12}\right) = 6$	A1	2.4
	\Rightarrow statement untrue or 6 is	s not irrational or 6 is rational	(2)	
(b)(i).				
(ii) Way	y = x + 3	V shaped graph {reasonably} symmetrical about the <i>y</i> -axis with vertical interpret (0, 3) or 3 stated or marked on the positive <i>y</i> -axis	B1	1.1b
	$\begin{array}{c c} & & & \\ \hline \\ \hline$	Superimposes the graph of $y = x+3 $ on top of the graph of $y = x + 3$	M1	3.1a
	the graph of $y = x + 3$ is either the same or above the graph of $y = x+3 $ {for corresponding values of x} or when $x \ge 0$, both graphs are equal (or the same) when $x < 0$, the graph of $y = x + 3$ is above the graph of $y = x+3 $		A1	2.4
	(3)			
(b)(ii) Way 2	$\frac{\text{Reason 1}}{\text{When } x \ge 0, x +3 = x+3 }$	Any one of Reason 1 or Reason 2	M1	3.1a
	$\frac{\text{Reason 2}}{\text{When } x < 0, x +3 > x+3 }$	Both Reason 1 and Reason 2	A1	2.4
			(5	marks)
(a)	Notes f	or Question 3		
(a) M1:	States or uses any pair of <i>different</i> num	bers that will disprove the statement.		
	E.g. $\sqrt{3}$, $\sqrt{12}$; $\sqrt{2}$, $\sqrt{8}$; $\sqrt{5}$, $-\sqrt{5}$;	$\frac{1}{\pi}$, 2π ; $3e$, $\frac{4}{5e}$;		
A1:	Uses correct reasoning to disprove the g	Uses correct reasoning to disprove the given statement, with a correct conclusion		
Note:	Writing $(3e)\left(\frac{4}{5e}\right) = \frac{12}{5} \Rightarrow$ untrue is sufficient for M1A1			
(b)(i)				
B1:	See scheme			
(b)(ii)	For construction of the local state	$\sim \mathbf{u} + 2$ with $ \mathbf{u} + 2 $ $ \mathbf{G} = 1$		
MI:	For constructing a method of comparing	For constructing a method of comparing $ x +3$ with $ x+3 $. See scheme.		
AI:	Explains fully why $ x +3 \ge x+3 $. See		1	
Note:	Do not allow either $x > 0$, $ x + 3 \ge x + 1 $	5 or $x \ge 0$, $ x + 3 \ge x+3 $ as a value	reason	
Note	x = 0 (or where necessary $x = -3$) nee	a to be considered in their solutions fo	T A I	
Note:	Do not allow an incorrect statement such as $x \le 0$, $ x +3 > x+3 $ for A1			

www.yesterdaysmathsexam.com

Questi	tion Scheme Marks AOs					
9		$\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta; \text{ as } h \to 0, \frac{\sin h}{h} \to 1 \text{ and } \frac{\cos h - 1}{h} \to 0$				
		$\frac{\cos(\theta+h)-\cos\theta}{h}$	B1	2.1		
		$=\frac{\cos\theta\cos h - \sin\theta\sin h - \cos\theta}{1-\cos\theta}$	M1	1.1b		
		h $\sin h$ $(\cos h - 1)$	Al	1.10		
		$= -\frac{\sin n}{h}\sin\theta + \left(\frac{\cos n - 1}{h}\right)\cos\theta$				
		As $h \to 0$, $-\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta \to -1\sin \theta + 0\cos \theta$	dM1	2.1		
		so $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta *$	A1*	2.5		
			(5)			
		Notes for Question 9	(5	marks)		
		$\frac{\cos(\theta + h) - \cos\theta}{\cos(\theta + \delta\theta) - \cos\theta}$				
B1:	Giv	es the correct fraction such as $\frac{1}{h}$ or $\frac{1}{\delta\theta}$				
	Alle	ow $\frac{\cos(\theta+h)-\cos\theta}{(\theta+h)-\theta}$ o.e. Note: $\cos(\theta+h)$ or $\cos(\theta+\delta\theta)$ may be expanded.	nded			
M1:	Uses the compound angle formula for $\cos(\theta + h)$ to give $\cos\theta\cos h \pm \sin\theta\sin h$					
A1:	Achieves $\frac{\cos\theta\cos h - \sin\theta\sin h - \cos\theta}{h}$ or equivalent					
dM1:	dep	endent on both the B and M marks being awarded				
	Cor	nplete attempt to apply the given limits to the gradient of their chord $\sin h$ (acc h 1) $\sin h$	$\left(\cos h \right)$)		
Note:	They must isolate $\frac{\cos n - 1}{h}$ and $\left(\frac{\cos n - 1}{h}\right)$, and replace $\frac{\sin n}{h}$ with 1 and replace $\left(\frac{\cos n - 1}{h}\right)$ with 0					
A1*:	cso. Uses correct mathematical language of limiting arguments to prove $\frac{d}{d\theta}(\cos\theta) = -\sin\theta$					
Note:	Acc	eptable responses for the final A mark include:				
	• $\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = \lim_{h \to 0} \left(-\frac{\sin h}{h} \sin \theta + \left(\frac{\cos h - 1}{h}\right) \cos \theta \right) = -1\sin\theta + 0\cos\theta = -\sin\theta$					
	• Gradient of chord = $-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of chord tends to					
		the gradient of the curve, so derivative is $-\sin\theta$				
	• Gradient of chord = $-\frac{\sin h}{h}\sin\theta + \left(\frac{\cos h - 1}{h}\right)\cos\theta$. As $h \to 0$, gradient of <i>curve</i> is $-\sin\theta$					
Note:	Give final A0 for the following example which shows <i>no limiting arguments</i> :					
	whe	$\operatorname{en} h = 0, \ \frac{\mathrm{d}}{\mathrm{d}\theta} (\cos\theta) = -\frac{\sin h}{h} \sin\theta + \left(\frac{\cos h - 1}{h}\right) \cos\theta = -1\sin\theta + 0\cos\theta$	$=-\sin\theta$			
Note:	Do	Do not allow the final A1 for stating $\frac{\sin h}{h} = 1$ or $\left(\frac{\cos h - 1}{h}\right) = 0$ and attempting to apply these				
Note:	In t	his question $\delta \theta$ may be used in place of h				
Note:	Cor	Condone $f'(\theta)$ where $f(\theta) = \cos\theta$ or $\frac{dy}{d\theta}$ where $y = \cos\theta$ used in place of $\frac{d}{d\theta}(\cos\theta)$				

Question 10

General points for marking question 10 (i):

- Students who just try random numbers in part (i) are not going to score any marks.
- Students can mix and match methods. Eg you may see odd numbers via logic and even via algebra
- Students who state $4m^2 + 2$ cannot be divided by (instead of is not divisible by) cannot be awarded credit for the accuracy/explanation marks, unless they state correctly that $4m^2 + 2$ cannot be divided by 4 to give an integer.
- Students who write $n^2 + 2 = 4k \implies k = \frac{1}{4}n^2 + \frac{1}{2}$ which is not a whole number gains no credit unless

they then start to look at odd and even numbers for instance

- Proofs via induction usually tend to go nowhere unless they proceed as in the main scheme
- Watch for unusual methods that are worthy of credit (See below)
- If the final conclusion is $n \in \mathbb{R}$ then the final mark is withheld. $n \in \mathbb{Z}^+$ is correct

Watch for methods that may not be in the scheme that you feel may deserve credit.

If you are uncertain of a method please refer these up to your team leader.

Eg 1. Solving part (i) by modulo arithmetic.

All $n \in \mathbb{N} \mod 4$	0	1	2	3
All $n^2 \in \mathbb{N} \mod 4$	0	1	0	1
All $n^2 + 2 \in \mathbb{N} \mod 4$	2	3	2	3

Hence for all n, $n^2 + 2$ is not divisible by 4.

Question 10 (i)	Scheme	Marks	AOs
-----------------	--------	-------	-----

Notes: Note that M0 A0 M1 A1 and M0 A0 M1 A0 are not possible due to the way the scheme is set up (i)

M1: Awarded for setting up the proof for either the even or odd numbers.

A1: Concludes correctly with a reason why $n^2 + 2$ cannot be divisible by 4 for either *n* odd or even.

dM1: Awarded for setting up the proof for both even and odd numbers

A1: Fully correct proof with valid explanation and conclusion for all n

Example of an algebraic proof

For $n = 2m$, $n^2 + 2 = 4m^2 + 2$	M1	2.1
Concludes that this number is not divisible by 4 (as the explanation is trivial)		1.1b
For $n = 2m + 1$, $n^2 + 2 = (2m + 1)^2 + 2 =$ FYI $(4m^2 + 4m + 3)$	dM1	2.1
Correct working and concludes that this is a number in the 4 times table add 3 so cannot be divisible by 4 or writes $4(m^2 + m) + 3$ AND stateshence true for all		2.4
	(4)	

Example of a very similar algebraic proof

For $n = 2m$, $\frac{4m^2 + 2}{4} = m^2 + \frac{1}{2}$	M1	2.1
Concludes that this is not divisible by 4 due to the $\frac{1}{2}$ (A suitable reason is required)	A1	1.1b
For $n = 2m + 1$, $\frac{n^2 + 2}{4} = \frac{4m^2 + 4m + 3}{4} = m^2 + m + \frac{3}{4}$	dM1	2.1
Concludes that this is not divisible by 4 due to the $\frac{3}{4}$ AND stateshence for all $n, n^2 + 2$ is notdivisible by 4		2.4
	(4)	

Example of a proof via logic

When <i>n</i> is odd, "odd \times odd" = odd	M1	2.1
so $n^2 + 2$ is odd, so (when <i>n</i> is odd) $n^2 + 2$ cannot be divisible by 4	A1	1.1b
When <i>n</i> is even, it is a multiple of 2, so "even \times even" is a multiple of 4	dM1	2.1
Concludes that when <i>n</i> is even $n^2 + 2$ cannot be divisible by 4 because n^2 is divisible by 4AND STATEStrues for all <i>n</i> .	A1*	2.4
	(4)	

Example of proof via contradiction

Sets up the contradiction 'Assume that $n^2 + 2$ is divisible by $4 \Rightarrow n^2 + 2 = 4k$,	M1	2.1
$\Rightarrow n^2 = 4k - 2 = 2(2k - 1) \text{ and concludes even}$ Note that the M mark (for setting up the contradiction must have been awarded)	A1	1.1b
States that n^2 is even, then <i>n</i> is even and hence n^2 is a multiple of 4	dM1	2.1
Explains that if n^2 is a multiple of 4 then $n^2 + 2$ cannot be a multiple of 4 and hence divisible by 4 Hence there is a contradiction and concludes Hence true for all n .		2.4
	(4)	

A similar proof exists via contradiction where

A1: $n^2 = 2(2k-1) \Longrightarrow n = \sqrt{2} \times \sqrt{2k-1}$

dM1: States that 2k-1 is odd, so does not have a factor of 2, meaning that *n* is irrational

Question	Scheme	Marks	AOs
16	Sets up the contradiction and factorises:		
	There are positive integers p and q such that	M1	2.1
	(2p+q)(2p-q)=25		
	If true then $\begin{array}{c} 2p+q=25\\ 2p-q=1 \end{array} \text{or} \begin{array}{c} 2p+q=5\\ 2p-q=5 \end{array}$	M1	2.2a
	Award for deducing either of the above statements		
	Solutions are $p = 6.5, q = 12$ or $p = 2.5, q = 0$ Award for one of these	A1	1.1b
	This is a contradiction as there are no integer solutions hence there are no positive integers p and q such that $4p^2 - q^2 = 25$	A1	2.1
		(4)	
			(4 marks)
Notes:	·		

M1: For the key step in setting up the contradiction and factorising

M1: For deducing that for *p* and *q* to be integers then either 2p+q=252p-q=1 or 2p+q=52p-q=5 must be true.

Award for deducing either of the above statements.

You can ignore any reference to 2p+q=12p-q=25 as this could not occur for positive p and q.

A1: For correctly solving one of the given statements,

For $\frac{2p+q=25}{2p-q=1}$ candidates only really need to proceed as far as p = 6.5 to show the contradiction.

For $\frac{2p+q=5}{2p-q=5}$ candidates only really need to find either *p* or *q* to show the contradiction.

Alt for $\frac{2p+q=5}{2p-q=5}$ candidates could state that $2p+q \neq 2p-q$ if p,q are positive integers.

A1: For a complete and rigorous argument with both possibilities and a correct conclusion.

Question	Scheme	Marks	AOs
16 Alt 1	Sets up the contradiction, attempts to make q^2 or $4p^2$ the subject and states that either $4p^2$ is even(*), or that q^2 (or q) is odd (**) Either There are positive integers p and q such that $4p^2 - q^2 = 25 \Rightarrow q^2 = 4p^2 - 25$ with * or ** Or There are positive integers p and q such that $4p^2 - q^2 = 25 \Rightarrow 4p^2 = q^2 + 25$ with * or **	M1	2.1
	Sets $q = 2n \pm 1$ and expands $(2n \pm 1)^2 = 4p^2 - 25$	M1	2.2a
	Proceeds to an expression such as $4p^2 = 4n^2 + 4n + 26 = 4(n^2 + n + 6) + 2$ $4p^2 = 4n^2 + 4n + 26 = 4(n^2 + n) + \frac{13}{2}$ $p^2 = n^2 + n + \frac{13}{2}$	A1	1.1b
	States This is a contradiction as $4p^2$ must be a multiple of 4 Or p^2 must be an integer And concludes there are no positive integers p and q such that $4p^2 - q^2 = 25$	A1	2.1
		(4)	

Alt 2

An approach using odd and even numbers is unlikely to score marks.

To make this consistent with the Alt method, score

M1: Set up the contradiction and start to consider one of the cases below where q is odd, $m \neq n$.

Solutions using the same variable will score no marks.

M1: Set up the contradiction and start to consider BOTH cases below where q is odd, $m \neq n$.

No requirement for evens

- A1: Correct work and deduction for one of the two scenarios where q is odd
- A1: Correct work and deductions for both scenarios where q is odd with a final conclusion

Options	Example of Calculation	Deduction
p (even) q (odd)	$4p^{2}-q^{2} = 4 \times (2m)^{2} - (2n+1)^{2} = 16m^{2} - 4n^{2} - 4n - 1$	One less than a multiple of 4 so cannot equal 25
p (odd) q (odd)	$4p^{2} - q^{2} = 4 \times (2m+1)^{2} - (2n+1)^{2} = 16m^{2} + 16m - 4n^{2} - 4n + 3$	Three more than a multiple of 4 so cannot equal 25

Question	Scheme	Marks	AOs
16	NB any natural number can be expressed in the form: $3k$, $3k + 1$, $3k + 2$ or equivalent e.g. $3k - 1$, $3k$, $3k + 1$		
	Attempts to square any two distinct cases of the above	M1	3.1a
	Achieves accurate results and makes a valid comment for any two of the possible three cases: E.g. $(3k)^2 = 9k^2 (= 3 \times 3k^2)$ is a multiple of 3	Al M1 on EPEN	1.1b
	$(3k+1)^{2} = 9k^{2} + 6k + 1 = 3 \times (3k^{2} + 2k) + 1$ is one more than a multiple of 3 $(3k+2)^{2} = 9k^{2} + 12k + 4 = 3 \times (3k^{2} + 4k + 1) + 1$ (or $(3k-1)^{2} = 9k^{2} - 6k + 1 = 3 \times (3k^{2} - 2k) + 1$) is one more than a multiple of 3		
	Attempts to square in all 3 distinct cases. E.g. attempts to square $3k$, $3k + 1$, $3k + 2$ or e.g. $3k - 1$, $3k$, $3k + 1$	M1 A1 on EPEN	2.1
	Achieves accurate results for all three cases and gives a minimal conclusion (allow tick, QED etc.)	Al	2.4
		(4)	
(4 marks			