

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International A Level in Statistics S2 (WST02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2017
Publications Code WST02_01_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2017 WST02 STATISTICS 2 Mark Scheme

Question	Scheme	Marks	
1.(a)	$X \sim \text{Po}(\frac{1}{4})$	B1	
	$P(X = 0) = e^{-\frac{1}{4}} = 0.778800$ awrt <u>0.779</u>	B1	
		(2)	
(b)	$[(P(X \ge 1))^3] = (1 - 0.7788)^3 = 0.010823$ awrt 0.0108	M1 A1 (2)	
(c)	$Y \sim B(7, 0.7788)$ $P(Y = 5) = 7C5 (0.7788)^5 (1 - 0.7788)^2 = 0.294386$ awrt 0.294	B1ft M1 A1	
		(3)	
(d)	H ₀ : $\mu = 8$ or $\lambda = 0.25$ H ₁ : $\mu < 8$ or $\lambda < 0.25$	B1	
		(1)	
(e)		B1	
	$P(W \le 3) = 0.0424 \ (< 0.05)$ $P(W \le 4) = 0.0996 \ (> 0.05)$	M1	
	Largest possible value of f is 3	A1	
	Dangest possible value of j is s	(3)	
	Notes	Total 11	
(a)	1^{st} B1 for writing or using Po($\frac{1}{4}$). May be implied by a correct answer or by awrt	0.78	
(b)			
(b)	M1 for $(1-0.779)^3$ or $(1 - \text{'their (a)'})^3$		
(c)	B1ft for writing or using B(7, 'their a'). May be implied by M1 scored.		
	M1 for a correct binomial expression for P(Y = 5) (ft their value of p). Allow $\binom{7}{2}$ etc or 21		
	May be implied by the correct answer but if $p \neq 0.779$ or better we must see expression		
ALT	They may use $W \sim B(7, \text{``} 1 - \text{their (a)''})$ for B1ft then $P(W = 2)$ for the M1		
(d)	B1 for both hypotheses correct. Must use λ or μ for either 8 or 0.25 [Use of \leq is B0]		
	If (d) is blank but correct hypotheses are seen in (e) can award retrospectively BUT if		
	hypotheses are given in (d) <u>and</u> (e) award this mark for answer in (d).		
(e)	B1 for writing Po(8) can be awarded if seen in (d) (may be implied e.g. by scoring M1)		
	M1 for using Po(8) to find a lower-tail critical region Need to see one of the given probability statements or implied by Po(8) and $f = 3$ seen.		
	A1 for $[f] = 3$ but allow $f \le 3$ Correct answer only scores $3/3$	_ 5 bcm.	

Question	Scheme	Marks	
2. (a)(i)	$X \sim B(6, 0.25)$	B1	
(ii)	<u>Prizes</u> are randomly placed in packets.	B1	
	Each <u>packet</u> has a <u>25%</u> chance of containing a <u>prize</u>		
	Each <u>packet</u> contains a <u>prize</u> <u>independent</u> ly of others	(2)	
(b)	$P(X = 1) = {6 \choose 1} (0.25)(1 - 0.25)^5 [= 0.355957] \text{ or } 0.5339 - 0.1780 [= 0.3559]$	M1	
	P(only 1 box contains exactly 1 prize) = $2P(X = 1) (1 - P(X = 1)) =$ answer in the range 0.458~0.459 (inc)	M1 A1 (3)	
(c)	$P(X \ge 2) = 1 - P(X \le 1) = 1 - 0.5339 = 0.4661$ awrt 0.466	M1 A1 (2)	
(d)	$Y \sim B(80, '0.4661') \rightarrow N(\text{awrt } 37.3, \text{ awrt } 19.9)$ [Calc: 37.285, 19.9078]	B1ft	
	$P(Y \le 30) \approx P\left(Z < \frac{30.5 - '37.3'}{\sqrt{19.9'}}\right)$	M1 dM1A1ft	
	P(Z < -1.52) = 1 - 0.9357 = 0.0643 (calc: 0.064165) awrt <u>0.064</u>	A1 (5)	
		Total 12	
	Notes		
(a)(i) (ii)	B1 for a completely specified distribution. Condone B(6,25%) must be in (a)(i) B1 for a contextualised reason involving randomness, independence or constant p. Must mention "prize" and "packet" and for constant prob "0.25" in correct sta	•	
(b)	1 st M1 for a correct expression for $P(X = 1)$ may <u>use</u> $P(X \le 1) - P(X = 0)$ from tables with $X \sim B(6, 0.25)$ (May be implied by sight of awrt 0.356 or answer in range) 2 nd M1 for writing or using $2P(X = 1)$ $(1 - P(X = 1))$ NB M0M1A0 is possible Allow just $2P(X = 1)$ $(1 - P(X = 1))$ or a numerical expression with any $p = P(X = 1)$ except $p = 0.25$ provided 0		
(c)	M1 for writing or using $1 - P(X \le 1)$ A1 for awrt 0.466 (calc: 0.46606445)		
(d)	1st B1ft for mean = np and variance = $np(1-p)$ where p = 'their (c)' ft their $0.466 \neq 0.25$ Any ft values must be correct to at least 3sf		
	$1^{\text{st}} \text{ M1} \pm \left(\frac{29.5 \text{ or } 30 \text{ or } 30.5 - \text{their mean}}{\text{their sd}}\right)$		
	2^{nd} M1 dependent on 1^{st} M1 for using a continuity correction 30 ± 0.5 1^{st} A1ft for $(\underline{+})$ correct standardized expression (ft their μ and σ) or $z = \text{awrt} \pm 1.52$ 2^{nd} A1 awrt 0.064		
	[Use of $p = 0.25$ giving N(20, 15) can score B0M1M1A1A0 i.e. max 3/5]		
NB	Use of binomial (leads to 0.063398 or 0.063477) but scores 0 marks.		

Question	Scheme			Marks	
3. (a)	Using area of triangle:	Solve:		Using integration: $P(X > 4)$	
	$P(X > 4) = \frac{(6-4) \times f(4)}{2}$	$\frac{(6-4)\left(\frac{3}{2}-\frac{1}{2}\right)}{2}$ $=4$	$\frac{1}{4}x) = \frac{1}{2}x$	$= \int_{4}^{6} \left(\frac{3}{2} - \frac{1}{4}x\right) dx = \left[\frac{3}{2}x - \frac{1}{8}x^{2}\right]_{4}^{6}$ $= \frac{1}{2} [\text{ so median of } X \text{ is 4}]$	M1
	$= \frac{1}{2} [\text{so median of } X \text{ is 4}]$	[so median	of <i>X</i> is 4]	$=\frac{1}{2}$ [so median of <i>X</i> is 4]	A1cso (2)
(b)	Area of triangle from $1 < x < 1$	< 4 = 0.5	$\int_{1}^{4} (ax+b)$	$dx = 0.5$ $-(\frac{a}{2} + b) = 0.5 \to 15a + 6b = 1$	
	$\frac{(4-1)\times(4a+b)}{2} = 0.5 \to 12$	2a + 3b = 1	$\left(\frac{16a}{2}+4b\right)$	$-\left(\frac{a}{2}+b\right) = 0.5 \to 15a+6b=1$	M1
	$f(1) = 0 \rightarrow a + b = 0$		f(1) = 0 —	$\Rightarrow a + b = 0$	M1
	Solving simultaneously: $12a - 3a = 1$		Solving sin 15 <i>a</i> – 6 <i>a</i> =	multaneously: = 1	dM1
	$a = \frac{1}{9} b = -\frac{1}{9}$		$a = \frac{1}{9}$ b	$b = -\frac{1}{9}$	A1 A1 (5)
(c)	1	or $\int (\frac{1}{9}x - \frac{1}{9})$	dx with +	c and $F(1) = 0$ or $F(4) = 0.5$	M1
	<i>x</i> .	or $\int \left(\frac{3}{2} - \frac{1}{4}x\right)$	dx with +	c and $F(6) = 1$ or $F(4) = 0.5$	M1
	$\begin{bmatrix} 0 \\ \frac{1}{2} x^2 - \frac{1}{2} x + \frac{1}{2} \end{bmatrix}$	1< r <			B1
	$F(x) = \begin{cases} \frac{18}{3} x - \frac{1}{2} x^2 - \frac{7}{2} \end{cases}$	$1 \leqslant x \leqslant 4 \leqslant x \leqslant x$	< 6		A1
	$F(x) = \begin{cases} \frac{1}{18}x^2 - \frac{1}{9}x + \frac{1}{18} & 1 \le x < 4\\ \frac{3}{2}x - \frac{1}{8}x^2 - \frac{7}{2} & 4 \le x \le 6\\ 1 & x > 6 \end{cases}$		A1 (5)		
					Total 12
	3.61.0		otes	1.0	• , ,
(a)	M1 for a correct expr' area above 4 using triangle or correct integral & attempt to integrate A1cso for $\frac{1}{2}$ or $x = 4$ with no errors. NB $f(4)=1.5-1=0.5$ or $1.5-0.25x=0.5$ is M0A0 Allow use of correct $F(x) = 0.5$ provided $F(4) = 0.5$ not used to establish $F(x)$				•
(b)	1^{st} M1 for a correct equation in a and b for an area (need not be simplified) 2^{nd} M1 for a correct equation in a and b using $f(1) = 0$ 3^{rd} dM1 dep on at least 1 M1; for solving two linear equations in a and b by eliminating one variable (allow one slip). If one equation is incorrect we must see explicit method to solve. 1^{st} A1 for a and 2^{nd} A1 for b (allow exact equivalents)				
(c)	1 st M1 for attempt to integrate $ax + b$ with correct limits $\underline{\mathbf{or}} + c$ and $F(1) = 0$ $\underline{\mathbf{or}}$ $F(4) = 0.5$ 2 nd M1 for attempt to integrate $\frac{3}{2} - \frac{1}{4}x$ with correct limits $\frac{\mathbf{or}}{2} + c$ and $\frac{1}{2} + c$				
	For the 2 nd M1 allow $\int_{1}^{4} (\text{their } ax + b) dx$ or F(4) based on their cdf for [1, 4) instead of + 0.5			d of +0.5	
	B1 for 1^{st} and 4^{th} line correct Allow $<$ or \le				
	1st A1 correct 2 nd line with limits NB $\frac{1}{18}(x-1)^2$ anywhere for the last 3 marks				
	2 nd A1 correct 3 rd line with li	imits NB	$1 - \frac{1}{8}(x - 6)^2$	uic iast 3 marks	

Question	Scheme	Marks	
4. (a)(i)	mean = np = 3.5	B1	
(ii)	standard deviation = $\sqrt{700 \times \frac{1}{200} (1 - \frac{1}{200})} = 1.86614$ awrt 1.866	M1 A1	
		(3)	
(b)(i)	H ₀ : $p = \frac{1}{200}$ H ₁ : $p > \frac{1}{200}$	B1	
(ii)	$X \sim B(500, \frac{1}{200}) \rightarrow Po(2.5)$	B1	
	$P(X \ge 5) = 1 - P(X \le 4) = 1 - 0.8912 = 0.1088$	M1 A1	
	[0.1088 > 0.05] therefore do not reject H ₀ , not significant, 5 does not lie in CR	M1	
	The doctor's claim is not supported. or Past records are not out of date/reliable	A1 cso	
	or Number/ Proportion / Probability of people/ with allergy is not higher.	(6)	
		(0)	
(c)	$Y \sim B(n, 0.30)$		
	$P(Y=0) = (0.70)^n < 0.005$	M1	
	n > 14.85		
	n = 15	A1cao	
	$P(Y \geqslant w) < 0.005$	M1	
	$P(Y \le 8) = 0.9848 \text{ or } P(Y \ge 9) = 0.0152 [>0.005]$	1411	
	$P(Y \le 9) = 0.9963 \text{ or } P(Y \ge 10) = 0.0037[<0.005]$	A1	
	w = 10	(4)	
		(4) Total 13	
	Notes	10tai 13	
(a)(ii)	M1 for a correct expression for standard deviation including root		
	NB Assuming Poisson will get $\sqrt{3.5} = 1.87082$ but scores M0A0 [Ans only	2/2]	
(1-)(2)		(') ' D 01	
(b)(i) (ii)	B1 H ₀ and H ₁ correct with p or π (may be seen in (ii)) [Use of λ or $\mu = 2.5$ for B1 for writing or using Po(2.5)	(1) 1S BU]	
(11)	B1 for writing or using Po(2.5) 1 st M1 for $1 - P(X \le 4)$ and use with bin or Poisson or for CR $P(X \ge 6) = 0.042$	<0.051	
	1 st A1 for awrt 0.109 or for CR $X \ge 6$	[<0.05]	
	2 nd M1 for a non-contradictory statement which follows from their probability/CR		
	2 nd A1cso correct contextual statement and fully correct solution with all other		
	marks scored in (b) (ii)		
NB	Use of Binomial leading to 0.1083 in (b) can score B1B0M1A0M1A0		
	Use of Normal [may get 0.103 (Po) or 0.102 (bin)] in (b) can score B1B0M0A0	M1A0	
(a)	1^{st} M1 for a correct expression for $P(Y = 0)$ and comparison with 0.005		
(c)	[allow inequality or equation]. Use of tables alone is M0		
	[allow inequality of equation]. Use of tables alone is MO 1^{st} A1 for $n = 15$ cao [Answer only is MOA0 unless we see the 0.7^n compared to 0.005]		
	2 nd M1 for using B("15", 0.30) to try and find an upper tail, need sight of <u>one</u> of g	_	
ft	If 1^{st} M1 scored can ft their n but need sight of probability expression and p	probability	
	one of which must be a correct ft and must be just above or just below 0.005 (o.e.	.)	
	$2^{\text{nd}} \text{ A1 for } w = 10 \text{ [but } w \ge 10 \text{ is A0]} \text{ Allow } Y \ge 10 \text{ or } Y > 9$		
	[Correct answer only scores M0A0M1A1]		

Question	Scheme	Marks	
5. (a)	P(customer waits > 4 minutes) = $1 - F(4) = 1 - [0.3(4) - 0.004(4^3)] =$	M1	
	$\frac{7}{125}$ or 0.056	A1	
		(2)	
(b)			
	$\frac{P(T>4)}{P(T>2)} = \frac{"0.056"}{1-F(2)}, = \frac{"0.056"}{1-[0.3(2)-0.004(2^3)]} = \frac{"0.056"}{0.432} =$	N/1 A 164	
	$P(T > 2)$ $1 - F(2)$ $1 - [0.3(2) - 0.004(2^{3})]$ 0.432	M1,A1ft	
	$\frac{7}{54}$ or awrt 0.130	A1	
	54	(3)	
(c)	F(2.7) = 0.73(1268) or $F(2.7) - 0.75 = -0.02$	M1	
	F(2.8) = 0.752(192) or $F(2.8) - 0.75 = (+) 0.002$		
	F(2.7) < 0.75 < F(2.8) therefore 2.7 < upper quartile < 2.8	A1cso	
		(2)	
		3.54	
(d)	$f(t) = 0.3 - 0.012 t^2$	M1	
	$E(T) = \int_{0}^{5} t(0.3 - 0.012t^{2}) dt = \left[\frac{0.3t^{2}}{2} - \frac{0.012t^{4}}{4} \right]_{0}^{5} , = \frac{0.3 \times 5^{2}}{2} - \frac{0.012 \times 5^{4}}{4}$	M1, A1	
	$\begin{bmatrix} 2(1) - \int_{0}^{1} (0.5 - 0.012i) di = \begin{bmatrix} 2 & 4 \end{bmatrix}_{0}^{1} = \begin{bmatrix} 2 & 4 \end{bmatrix}_{0}^{1}$	1,11,111	
	$=\frac{15}{8}$ or 1.875		
	$=\frac{1}{8}$ or 1.873	A1	
		(4)	
		Total 11	
(a)	Notes M1 for writing or using $1 - F(4)$ [Just writing $F(4) = 0.944$ alone is M0]		
(a)	P($T > 4$) "(a)"		
(b)	M1 for a correct ratio expression $\frac{P(T > 4)}{P(T > 2)}$ or $\frac{"(a)"}{P(T > 2)}$ or better. Ignore e.g. $P(T > 4)$	T > 2 T > 4	
	Allow other letters for T . If <u>only</u> numerical values are used, must have num <	denom.	
	1 st A1ft for a correct ratio expression with 'their (a)' on numerator and correct nu		
	expression or 0.43 or better on denominator.		
(-)	M1 for attempting to find $E(2.7)$ and $E(2.9)$		
(c)	M1 for attempting to find $F(2.7)$ and $F(2.8)$ A1cso for both $F(2.7) = \text{awrt } 0.73 < 0.75 < F(2.8) = \text{awrt } 0.752$ and correct conclusions.	sion	
	May use $F(x) = 0.75$ and look for a change of sign. There must be sight of (
ALT	Using calculator: M1 for $0.3t - 0.004t^3 = 0.75$ leading to $t = \text{awrt } 2.79$ (2.78937		
	A1 for correct conclusion (must reject other roots i.e. 6.9218 and -9.7112 if for		
	Conclusion must clearly state that Q_3 is between 2.7 and 2.8. Penalise false st	atements.	
(d)	1^{st} M1 for differentiating F(t) to find f(t) [Just 2 terms with at least 1 correct]		
(u)	2 nd M1 for attempting to integrate $t \times$ their $f(t)$ ignore limits[at least one $t^n \to t^{n+1}$]		
	1st A1 for correct integration of correct $f(t)$ & use of limits (must see some correct use of 5)		
	This mark may be implied by a correct answer.		
	$2^{\text{nd}} \text{ A1} \frac{15}{8} \text{ or } 1.875 \text{ (condone } 1.88) \text{ [Correct answer only of } \frac{15}{8} \text{ or } 1.875 \text{ scores } 4/4]$		
Special Constant	•		
Special Case	Use of $E(T) = 5 - \int_{0}^{5} F(t)dt$ can score 4 out of 4 if fully correct.		
Case	0		

Question	Scheme			
6. (a)	(3, 3, 3) $(3, 3, 4) \times 3 [(3, 4, 3), (4, 3, 3)]$ $(3, 4, 4) \times 3 [(4, 3, 4), (4, 4, 3)]$	B1B	1	
(b)	(4, 4, 4) $P(M = 3) = (0.5)^3 = 0.125$	B1	(2)	
	$P(M = 5) = 1 - (0.8)^{3} \underline{\text{or}} P(M = 5) = 3(0.2)(0.8)^{2} + 3(0.2)^{2}(0.8) + (0.2)^{3}$ $\underline{\text{or}} P(M = 4) = 3(0.5)^{2}(0.3) + 3(0.5)(0.3)^{2} + (0.3)^{3}$	M1		
	P(M = 4) = 1 - [(P(M = 3) + P(M = 5))] or P(M = 5) = 1 - [(P(M = 3) + P(M = 4))]	M1		
	$\begin{array}{ c c c c c c }\hline m & 3 & 4 & 5 \\ \hline P(M=m) & 0.125 & 0.387 & 0.488 \\ & & & & & & & & \\ \hline \begin{pmatrix} \frac{1}{8} \end{pmatrix} & & & & & & & \\ \hline \begin{pmatrix} \frac{387}{1000} \end{pmatrix} & & & & & \\ \hline \begin{pmatrix} \frac{61}{125} \end{pmatrix} & & & & \\ \hline \end{array}$	A1		
(c)	Mode of $\underline{S_1} = 3$ and Mode of $\underline{M} = 5$	B1	(4) (1)	
	NT-4			
(a)	Notes 1st B1 for at least 4 correct samples listed e.g. (3, 3, 3) and (3, 3, 4) ×3 2nd B1 for all 8 correct samples listed (with no extra or incorrect ones given)			
(b)	B1 for $P(M = 3) = 0.125$ oe Condone e.g. $X = 3$ and 12.5% 1^{st} M1 for a correct expression <u>or</u> a correct probability for $P(M = 5)$ or $P(M = 4)$ 2^{nd} M1 for a correct expression for third probability of 3, 4 or 5 or if B1 or 1^{st} M1 are scored then award this mark for using the sum of the probs = 1 A1 for both $P(M = 4) = 0.387$ oe and $P(M = 5) = 0.488$ oe			
(c)	B1 for both correct modes with clear S and M labels			

Question	Scheme	Marks	
7.(a)	$E(3-2X)=3-2E(X)$ [= 3 - 2 $\frac{(a+b)}{2}$]	M1	
	= 3 - a - b	A1	
		(2)	
(b)	$P(X > \frac{1}{3}b + \frac{2}{3}a) =$		
	$\frac{b - (\frac{1}{3}b + \frac{2}{3}a)}{b - a}, = \frac{2}{3} \qquad \text{or} \qquad 1 - \frac{(\frac{1}{3}b + \frac{2}{3}a) - a}{b - a}, = \frac{2}{3}$	M1, A1	
	b-a, -3 3 $b-a$, -3	,	
		(2)	
(c)	$[Var(X) = E(X^{2}) - [E(X)]^{2}]$		
	$E([3]X^{2}) = \int_{a}^{b} \frac{1}{(b-a)} [3]x^{2} dx$ $\frac{(b-a)^{2}}{12} = E(X^{2}) - 0^{2} \text{or} E(X^{2}) - \frac{(a+b)^{2}}{4}$	M1	
	$\frac{12}{a} - E(X) - 0 \underline{01} E(X) - \underline{01}$		
	$\begin{bmatrix} 1 & 2 \end{bmatrix} b & \begin{pmatrix} b^3 & b^3 \end{pmatrix} \qquad \qquad 2 & \begin{pmatrix} a & b^2 \end{pmatrix}$		
	$= \left[\frac{1}{(b-(-b))} x^{3}\right]_{b}^{b} = \left(\frac{b^{3}-(-b^{3})}{2b}\right)$ $= b^{2}$ $E(3X^{2}) = 3\left(\frac{(b-(-b))^{2}}{12}\right)$ $= b^{2}$	dM1	
	$=b^2$ $=b^2$	A1	
		(3)	
(d)	Range = $b - a = 18$ or $bb = 18$ or $b = 9$	M1	
	$Var(X) = \begin{bmatrix} \frac{18^2}{12} & \underline{or} & \frac{9^2}{3} - 0^2 \end{bmatrix} = \underline{27}$	A1	
	$\begin{bmatrix} 12 & -3 & 1 \end{bmatrix}$	711	
		(2)	
		Total 9	
(a)	Notes M1 for using 2 2E(Y) where E(Y) is a linear function of a and b		
(a)	M1 for using $3 - 2E(X)$ where $E(X)$ is a linear function of a and b A1 for $3 - a - b$ or $3 - (a + b)$		
(b)	M1 for a correct fraction expression for $P(X > \frac{1}{3}b + \frac{2}{3}a)$ in terms of a and b (need	brackets!)	
	A1 for $\frac{2}{3}$		
	3		
(c)	1st M1 for a correct integral for $E(3X^2)$ or $E(X^2)$ (ignore limits)		
	2^{nd} dM1 dependent on 1^{st} M1 for correct integration and correct use of $a = -b$ incl limits. Must be E(3 X^2)	luding in	
	mints. Wust be E(3A)		
ALT	1 st M1 for a correct expression for E(3 X^2) or E(X^2) in terms of a and b from substituting from the substitution of the substitution o	stituting	
	into Var(X) and using E(X) = 0 or $\frac{(a+b)}{2}$		
	2		
	2^{nd} dM1 dependent on 1^{st} M1 for $3 \text{ E}(X^2)$ and correct use of $a = -b$		
(4)	M1 for writing or using $(b, c) = 10$ or $b, b = 10$ or $b = 0$		
(d)	M1 for writing or using $(b-a) = 18$ or $b-b=18$ or $b=9$ A1 for 27 [Correct answer only is $2/2$]		
	111 101 27 [Contoct and not only to 202]		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom