

A-LEVEL MATHEMATICS 7357/3

Paper 3

Mark scheme

June 2019

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2019 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Mark scheme instructions to examiners

General

The mark scheme for each question shows:

- the marks available for each part of the question
- the total marks available for the question
- marking instructions that indicate when marks should be awarded or withheld including the principle on which each mark is awarded. Information is included to help the examiner make his or her judgement and to delineate what is creditworthy from that not worthy of credit
- a typical solution. This response is one we expect to see frequently. However credit must be given on the basis of the marking instructions.

If a student uses a method which is not explicitly covered by the marking instructions the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Key to mark types

Μ	mark is for method
R	mark is for reasoning
А	mark is dependent on M marks and is for accuracy
В	mark is independent of M marks and is for method and accuracy
E	mark is for explanation
F	follow through from previous incorrect result

Key to mark scheme abbreviations

correct answer only
correct solution only
follow through from previous incorrect result
Indicates that credit can be given from previous incorrect result
anything which falls within
anything which rounds to
any correct form
answer given
special case
or equivalent
no method shown
possibly implied
substantially correct approach
significant figure(s)
decimal place(s)

AS/A-level Maths/Further Maths assessment objectives

Α	0	Description					
	AO1.1a	Select routine procedures					
AO1	AO1.1b	Correctly carry out routine procedures					
	AO1.2	Accurately recall facts, terminology and definitions					
	AO2.1	Construct rigorous mathematical arguments (including proofs)					
	AO2.2a	Make deductions					
AO2	AO2.2b	Make inferences					
	AO2.3	Assess the validity of mathematical arguments					
	AO2.4	Explain their reasoning					
	AO2.5	Use mathematical language and notation correctly					
	AO3.1a	Translate problems in mathematical contexts into mathematical processes					
	AO3.1b	Translate problems in non-mathematical contexts into mathematical processes					
	AO3.2a	Interpret solutions to problems in their original context					
	AO3.2b	Where appropriate, evaluate the accuracy and limitations of solutions to problems					
AO3	AO3.3	Translate situations in context into mathematical models					
	AO3.4	Use mathematical models					
	AO3.5a	Evaluate the outcomes of modelling in context					
	AO3.5b	Recognise the limitations of models					
	AO3.5c	Where appropriate, explain how to refine models					

Examiners should consistently apply the following general marking principles

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to students showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the student to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Work erased or crossed out

Erased or crossed out work that is still legible and has not been replaced should be marked. Erased or crossed out work that has been replaced can be ignored.

Choice

When a choice of answers and/or methods is given and the student has not clearly indicated which answer they want to be marked, mark positively, awarding marks for all of the student's best attempts. Withhold marks for final accuracy and conclusions if there are conflicting complete answers or when an incorrect solution (or part thereof) is referred to in the final answer.

Q	Marking instructions	AO	Mark	Typical solution
1	Ticks the correct response	1.2	B1	$\left\{x\in\mathbb{R}:-1\leq x\leq 1\right\}$
	Total		1	

Q	Marking instructions	AO	Mark	Typical solution
2	Circles the correct response	1.1b	B1	1650
	Total		1	

Q	Marking instructions	AO	Mark	Typical solution
3	Circles the correct response	2.2a	B1	$u_n = 2 - 0.9^{n-1}$
				$u_n = 2 - 0.9^{n-1}$
	Total		1	

Q	Marking instructions	AO	Mark	Typical solution
4	Draws quadratic curve in the correct orientation eg vertex above <i>x</i> -axis and two intersections on the <i>x</i> -axis	1.1a	M1	
	Labels all correct points of intersection for the correct quadratic curve with vertex clearly in the 2nd quadrant Must see -3, 0.5 and 3	1.1b	A1	
	Draws correct straight line passing through (-3, 0) and (0, 3) or straight line which intersects their quadratic curve on the negative <i>x</i> -axis and positive <i>y</i> - axis and shades corresponding region for their quadratic curve FT their quadratic All lines must be solid Condone missing label R	2.2a	A1F	-3 R 0.5
	Total		3	
	IUtai		3	

Q	Marking instructions	AO	Mark	Typical solution
5	Uses appropriate method to find radius eg complete the square by using 3 ² or 4 ² on LHS or RHS PI by correct radius 17 or 289	3.1a	M1	$(x-3)^{2}-9+(y-4)^{2}-16=264$ $(x-3)^{2}+(y-4)^{2}=289$
	Deduces correct radius or radius squared or fully correct completed square form seen	2.2a	A1	$\frac{1}{2} \times 17^2 \times 0.9 = 130.05$ $\frac{1}{2} \times 17^2 \sin 0.9 = 112.10$
	Uses appropriate method to find area of sector using radius 17 or their stated value of radius or value of radius clearly shown on diagram	1.1a	M1	$\frac{-2}{2}$ Area of segment = 16.9
	Uses appropriate method to find area of triangle using radius 17 or their stated radius	1.1a	M1	
	Obtains area correct to at least 3 significant figures AWRT 16.9	1.1b	A1	
	Total		5	

Q	Marking instructions	AO	Mark	Typical solution
6(a)	States an appropriate even Pythagorean triple	2.2a	B1	a = 6 b = 8 c = 10
6(b)	Begins an appropriate method of proof assuming at least two sides are odd eg states 'assume <i>a</i> , <i>b</i> odd' or defines <i>a</i> , <i>b</i> (or <i>c</i>) algebraically with different unknowns	3.1a	B1	Assume a and b are odd so $a = 2m + 1$ and $b = 2n + 1$ $(2m + 1)^2 + (2n + 1)^2$ $= 4m^2 + 4m + 1 + 4n^2 + 4n + 1$ $= 2(2m^2 + 2m + 2n^2 + 2n + 1)$
	Uses Pythagoras' theorem with at least two odd sides either in words or algebraically	1.1a	M1	which is even, so c^2 is even, so c is even. Therefore it is not possible for all three to be odd.
	Completes rigorous argument to prove the required result CSO	2.1	R1	
	Total		4	

Q	Marking instructions	AO	Mark	Typical solution
7(a)	Forms $4x + 3 \equiv A(x-1) + B$	1.1b	B1	$\frac{4x+3}{(x-1)^2} \equiv \frac{A}{x-1} + \frac{B}{(x-1)^2}$ $4x+3 \equiv A(x-1) + B$
	Uses substitution or comparison of coefficients to find their A or B (must have degree of LHS = degree of RHS)	1.1a	M1	Let x = 1 hence $B = 7$ Let x = 0 then 3 = $B - A$ and hence A = 4
	Obtains correct <i>A</i> and <i>B</i>	1.1b	A1	A = 4 and $B = 7$
7(b)	Integrates their expression, at least one term correct	3.1a	M1	$\int_{-\infty}^{4} \left(\frac{4}{x^2} + \frac{7}{(x^2 - 1)^2}\right) dx$
	Integrates their expression fully correctly Must be of the form $A\ln(x-1) - \frac{B}{x-1}$ OE FT their <i>A</i> and <i>B</i>	1.1b	A1F	$J_{3} (x - 1 (x - 1)^{2})$ $= \left[4 \ln(x - 1) - \frac{7}{x - 1} \right]_{3}^{4}$ $= \left[4 \ln 3 - \frac{7}{3} \right] - \left[4 \ln 2 - \frac{7}{2} \right]$ $= 4 \ln \frac{3}{2} + \frac{7}{6}$
	Substitutes limits correctly into their integrated expression	1.1a	M1	3 ⁴ 7
	Uses at least one law of logs correctly	1.1a	M1	$=\ln \frac{1}{2^4} + \frac{1}{6}$ 81 7
	Completes argument to obtain correct exact answer in correct form or stating $p = \frac{7}{6}$ and $q = \frac{81}{16}$ No subsequent incorrect working	2.1	R1	$1 = \ln \frac{1}{16} + \frac{1}{6}$
	Total		8	

Q	Marking instructions	AO	Mark	Typical solution
8(a)	Uses model with $t = 0$ and	3.4	M1	
	θ = 75 to form an equation			$75 - 5(4 + 2^{-9})$
	Obtains correct λ	1.1b	A1	$75 = 5(4 + \lambda e)$
	Uses model with $t = 2$, $\theta = 68$	3.4	M1	$\lambda = 11$
	and their λ to form an equation			
	Solves their equation correctly to find k	1.1a	M1	$68 = 5(4 + 11e^{-2k})$
	Obtains correct k	1.1b	A1	k = 0.068066
	AWRT 0.07			
	OE			$\theta = 5(4 + 11e^{-0.068066 \times 15})$
	Uses model with their λ and their	3.4	M1	
	k and t = 15			$= 39.8^{\circ}C$
	Obtains correct temperature	1.1b	A1	
8	States correct room temperature	34	B1	20° <i>C</i>
(b)(i)	Condone missing units	0.1		20 C
X = / (/	CAO			
	Explains that the temperature	2.4	E1	As t gets large the temperature
	predicted by the model will			predicted by the model will get
	approach room temperature as t			close to room temperature
	increases.			
	0E			
8	Uses the model with their k and	3.4	M1	$5(4+11e^{-0.068066t}) - 21$
(b)(ii)	their room temperature+1 to form	-		3(4+11e) = 21
	equation for t			t = 58.87
	Obtains the correct value of t	1.1b	A1	
	AWRT 59			
	1944			
8(c)	Room temperature	3.5a	E1	The new room temperature might
-(-)	change/higher/lower	2.00		change
	Cooling rate change/higher/lower			, č
	or identifies a factor that may be			
	different in a different place.			
	Total		12	

Q	Marking instructions	AO	Mark	Typical solution
9(a)	Demonstrates by substitution that	2.4	E1	
	x = 0 or $y = 0$ leads to value on			When $x = 0$
	the LHS = 0			$0^2 y^2 + 0 y^4 = 0$
		0.4		W hop $y = 0$
	Completes rigorous argument to	2.1	R1	$r^{2}0^{2} + r^{04} - 0$
	snow required result			x 0 + x0 = 0
				This is a contradiction because
				$x^2y^2 + xy^4 = 12$ so the curve
				does not intersect either axis
9 (h)(i)	Uses implicit differentiation	3.1a	M1	$2ry^{2} + 2r^{2}y\frac{dy}{dt} + y^{4} + 4ry^{3}\frac{dy}{dt} = 0$
(I)(I)	Product rule used LHS (at least	1 1 2	M1	$\frac{2xy + 2x}{dx} = 0$
	one pair of terms correct)	1.14		$dy = 2xy^2 + y^4$
	Differentiates equation of curve	1.1b	A1	$\frac{dx}{dx} = -\frac{1}{2x^2y + 4xy^3}$
	fully correctly			$v(2rv+v^3)$
	Collects their $\frac{dy}{dx}$ terms in an	3.1a	M1	$=-\frac{y(2xy+y')}{y(2xy^2+4xy^2)}$
	$\frac{dx}{dx}$ terms in an			$y(2x^2+4xy^2)$
	equation and factorises			$=-\frac{2xy+y^3}{2}$
	Completes convincing argument	2.1	R1	$2x^2 + 4xy^2$ '
	to obtain required result by			
	AG			
9	Begins argument by setting	21	M1	
(b)(ii)	dv			For stationary points
	$\frac{dy}{dx} = 0$ to form an equation for			dy o
	x and y			$\frac{d}{dx} = 0$
	PI by $2xv + v^3 = 0$			$\Rightarrow 2xv + v^3 = 0$
		1 16	۸1	$\rightarrow v^2 - 2r$
	Obtains $y^2 = -2x$ or $y = \sqrt{-2x}$	1.10	AI	$\rightarrow y = -2x$
	or $x = \frac{-y^2}{2}$			$\Rightarrow x^2 y^2 + x(-2x) y^2 = 12$
	Substitutes $y^2 = -2x$ or	1.1a	M1	$\Rightarrow -x^2y^2 = 12$
	$-y^2$			Since $-x^2y^2 < 0$ there can be no
	$x = \frac{1}{2}$ into equation for curve			stationary points.
	Completes convincing argument	2.2a	R1	
9	Substitutes w = 1 into equation of	2 1 2	<u>к</u> л1	1
9 (b)(iii)	Substitutes $y = 1$ into equation of curve to obtain correct quadratic	J. 1a		$y = 1 \Longrightarrow x^2 + x - 12 = 0$
(~)()	ACF			$\Rightarrow x = 3$ (x > 0)
	Deduces $x = 3$	2.2a	R1	dv 7
	PI by substituting their <i>x</i> in their			$\Rightarrow \frac{z}{dx} = -\frac{z}{30}$
	dy/dx			7
	Substitutes their x and $y = 1$ in	1.1a	M1	$y - 1 = -\frac{7}{30}(x - 3)$
	their dy/dx			50
	Obtains correct equation of	1.1b	A1	
	ISW			
	Total		15	

Q	Marking Instructions	AO	Mark	Typical Solution
10	Ticks correct box	1.2	B1	Strong negative
	Total		1	

Q	Marking Instructions	AO	Mark	Typical Solution
11	Circles correct answer	1.2	B1	Quota
	Total		1	

Q	Marking Instructions	AO	Mark	Typical Solution
12(a)	Calculates correct value of mean (accept 161)	1.1b	B1	$\bar{x} = 160.6$
	Calculates correct value of standard deviation (accept 7.2 or better)	1.1b	B1	sd = 6.8 160.6 – 2 × 6.8 = 147
	Uses their \overline{x} and their s. d in $\overline{x}-2 \times s. d$ (accept 146.2)	1.1b	M1	146 < 147 Hence Ann is an outlier
	Compares 146 with their calculation and correctly concludes that Ann's height is an outlier FT their \overline{x} and their s.d	2.1	R1F	
12(b)	States correctly that the mean would increase with a valid reason or increases to 162.2 Accept the mean would increase as the lower/lowest value has been removed or other valid reason	2.2b	B1	The mean would increase because Ann's height is less than the mean Standard deviation would decrease because Ann's height is an outlier
	States correctly that the standard deviation would decrease with a valid reason or decreases to 5.03	2.2b	B1	
	Accept the standard deviation would decrease because the data is less spread out or other valid reason		6	
	Total		U	

Q	Marking Instructions	AO	Mark	Typical Solution
13	Obtains correct mean	1.1b	B1	6
(a)(l)	Obtaine correct verience	1 1 6	D1	4.0
13 (a)(ii)	Obtains correct variance	1.10	BI	4.8
13	Uses the Binomial formula with	1.1a	M1	
(b)(i)	<i>n</i> = 30, <i>p</i> = 0.2 or			$P(X = 10) = {\binom{30}{0.2^{10}}} 0.2^{10} 0.8^{20}$
	$P(X \le 10) - P(X \le 9)$			
	PI by correct answer			= 0.0355
	Obtains correct probability	1.1b	A1	
	AWFW [0.035, 0.036]			
13	Calculates either $P(X \le 4) = 0.255$ or	3.1b	M1	
(b)(ii)	$P(X \le 5) = 0.4275$ using the Binomial			$P(X \le 4) = 0.255$
	distribution			$P(X \ge 5) = 1 - P(X \le 4)$
	States $P(X > 5) - 1 - P(X < 4)$ or	1 1h	M1	= 1 - 0.255 = 0.745
	subtracts their stated value of	1.10		0.715
	$P(X \le 4)$ from 1			
				-
	Obtains correct probability	1.1b	A1	
	AWFW [0.74, 0.75]			
13	Raises their 0.745 to power of 5	3.1b	M1	
(c)(i)	·			$0.745^5 = 0.229$
	Obtains their correct probability	1.1b	A1F	
	FT their 0.745			
	AWRT their 0.229			
13	Gives a valid reason that	3.5b	E1	Probability may change as
(c)(ii)	probability/likelihood/chances may			Patrick improves
	change/increase/decrease as a result			
	of external factor change over 5 day			
	period or Patrick improves			
	Total		10	
	างเล		10	

Q	Marking Instructions	AO	Mark	Typical Solution
14	Finds correct probability	1.1b	B1	10
(a)(i)	OE			120
14	Finds total number for 'depression'	1.1a	M1	
(a)(II)	Coloulates come at another ility	4.46	A 4	9+2+1=12
		1.10	AT	$\frac{12}{120}$
				120
14	Uses conditional probability to	1.1a	M1	22
(a)(iii)				
	P(stress low exercise) to obtain $\frac{30}{39 \le x \le 119}$			50
		0.41		-
	Obtains correct probability	3.1b	A1	
	ACF			
14(b)	Shows that 14+38 or 52	3.1b	M1	
	or			14 + 38 = 52
	14 38			
	$\frac{1}{50} + \frac{1}{50}$			52 > 50
				so events are not mutually
	Compares 14+38 with 50	2.4	R1	exclusive
	Or comported			-
	$\frac{14}{12} + \frac{30}{12}$ with 1			
	50 50			
	and concludes events are not			
	Total		7	

Q	Marking Instructions	AO	Mark	Typical Solution
15	Identifies critical value = 0.549	1.1b	B1	0.567 > 0.549
	Compares 0.567 correctly to their critical value chosen from the table	3.5a	M1	There is sufficient evidence that the larger the rainfall, the
	Makes correct inference eg there is sufficient/significant evidence that the larger the rainfall, the greater the yield/positive correlation between the two FT their critical value chosen from the table	2.2b	R1F	greater the yield.
	Total		3	

Q	Marking Instructions	AO	Mark	Typical Solution
16(a)	States correct first reason involving	2.3	E1	
	the y-axis			Scale on y-axis does not start at
	Accept there is no scale on the			zero.
	y-axis or graph does not start at 0			
	States correct second reason	2.3	E1	Data is for salt purchased as
	involving salt purchased and			separate food stuff, not
	consumed implying data not			consumed
	comparable			
16/h)	States both hypotheses correctly	2.5	D1	
(u)01	for two tailed test	2.5	Ы	$H_{1} = 79.0$
	Accept H : population mean is			$H_0: \mu = 70.9$
	78 9			$n_1 \cdot \mu \neq 70.9$
	Formulates the test statistic or uses	1 1 2	M1	80.4 - 78.9
	the correct distribution of the	1.10		Test statistic = $\frac{3507}{250}$
	sample mean			$23.0/\sqrt{918}$
	PI by correct test statistic value or			= 1.82
	probability or acceptance region			
	Condone 78.9 - 80.4			Critical z value 1.96
	If region used, condone any $z =$			
	(-4,4)			1.82 < 1.96
	Obtains the correct value of the	1.1b	A1	
	test statistic 1.82 or			Accept H_0 - there is insufficient
	obtains the correct probability			evidence to suggest that the
	0.0345 or 0.0691			mean amount of sugar
	obtains acceptance region of			purchased has changed
	[77.3, 80.5]			
	Compares their 1.82 with 1.96 or	1.1a	M1	
	compares their 0.0345 with 0.025			
	compares their 0.0691 with 0.05 or			
	[77.3, 60.3]	2 2h	Δ1	
		2.20		
	Must refer to H_{c}			
	Correctly concludes in context that	3 2a	F1	
	there is insufficient evidence to	0.20	_ <u> </u>	
	suggest that the mean amount of			
	sugar purchased has changed			
	CSO			
16(c)	Explains role of significance level in	2.3	E1	
	rejecting null hypothesis in error			There is a 10% chance of
	Accept Type I error			rejecting null hypothesis in error
		0.0		4
	Explains that there is 10 % chance	2.3	E1	
	TOR THIS TO OCCUR			
	Reference to 10 % chance the			
			10	
	lotal		10	

Q	Marking Instructions	AO	Mark	Typical Solution
17(a)	Obtains either z-value from inverse	3.1b	B1	
	normal distribution			$P(7 < 30 - \mu) = 0.1$
	Condone sign error			$P\left(Z < \frac{\sigma}{\sigma}\right) = 0.1$
	AWFW [-1.29, -1.28] or			
	[-0.85, -0.84]			$P(7 > \frac{32.5 - \mu}{2}) = 0.8$
	Forms one equation with unknown	1.1a	M1	$\left(\begin{array}{c} L \\ \sigma \end{array} \right) = 0.0$
	μ and σ using standardised result			
	and z-value (for 0.1)			z= -1.2816 z = -0.8416
	Accept $z = (-4, 4)$ except ±0.1,			20
	$\pm 0.2, \pm 0.8, \pm 0.9$			$\frac{30-\mu}{2} = -1.2816$
	Condone $\mu - 30$			σ
	Must use 30	4.4		$325 - \mu$
	Forms next equation with unknown	1.1a	M1	$\frac{52.5 \ \mu}{2} = -0.8416$
	μ and σ using standardised result			σ
	and z-value (for 0.8)			$25 = 0.44\sigma$
	Accept $z = (-4, 4)$ except ±0.1,			2.0 0.110
	$\pm 0.2, \pm 0.8, \pm 0.9$			$\sigma = 5.68$
	Condone $\mu = 32.5$			
	Obtains both equations correctly	1 1b	A1	$\mu = 37.3$
	Solves their two simultaneous	1.15	M1	
	equations in the form of μ and σ	1.10	1011	
	Obtains correct value of σ	1 1h	۸1	
	ΔWFW (5.2, 5.9)	1.10		
	ISW			
	Obtains correct value of µ	1.1b	A1	
	AWFW (37.1, 37.5)			
	ISW			
17	States correct probability	1.2	B1	1
(b)(i)				
1 7	Uses their μ and their σ to find	1.1a	M1	
(II)(II)	P(X < 35)			P(X < 35) = 0.344
	PI by correct value of probability			
	using their μ and their o of			
	their μ and their σ			
	$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$	1 1h	∆1⊏	
	decimal places or better	1.10	AIF	
	FT their μ and their σ			
	If $\mu = (37.1, 37.5)$ and $\sigma = (5.2, 5.9)$			
	used, answer will be (0.31, 0.37)			
17(c)	Identifies the Binomial distribution	3.1b	M1	
. ,	model with $n = 13$, $p =$ their 0.344			Y= no. of brownies less than
	PI by correct value of probability			35g in a batch of 13
	using their p			
	Obtains correct probability to 2	1.1b	A1F	$Y \sim B(13,0.344)$
	decimal places or better			$P(Y \le 3) = 0.294$
	FT their p			
	If $p = (0.31, 0.37)$ answer will be			
	[0.23, 0.39]			
	Total		12	