

Question	Scheme	Marks	AOs
14 (a)	$(x-r)^{2}+(y-r)^{2}=r^{2} \text { or } x^{2}+y^{2}-2 r x-2 r y+r^{2}=0$	B1	2.2a
	$\begin{gathered} y=12-2 x, x^{2}+y^{2}-2 r x-2 r y+r^{2}=0 \\ \Rightarrow x^{2}+(12-2 x)^{2}-2 r x-2 r(12-2 x)+r^{2}=0 \end{gathered}$ or	M1	1.1b
	$\begin{gathered} y=12-2 x,(x-r)^{2}+(y-r)^{2}=r^{2} \\ \Rightarrow(x-r)^{2}+(12-2 x-r)^{2}=r^{2} \end{gathered}$		
	$\begin{gathered} x^{2}+144-48 x+4 x^{2}-2 r x-24 r+4 r x+r^{2}=0 \\ \Rightarrow 5 x^{2}+(2 r-48) x+\left(r^{2}-24 r+144\right)=0 \end{gathered}$	A1*	2.1
		(3)	
(b)	$b^{2}-4 a c=0 \Rightarrow(2 r-48)^{2}-4 \times 5 \times\left(r^{2}-24 r+144\right)=0$	M1	3.1a
	$r^{2}-18 r+36=0$ or any multiple of this equation	A1	1.1b
	$\Rightarrow(r-9)^{2}-81+36=0 \Rightarrow r=\ldots$	dM1	1.1b
	$r=9 \pm 3 \sqrt{5}$	A1	1.1b
		(4)	
(7 marks)			

Question Number	Scheme	Marks		
12(a)	Writes C as $(x-a)^{2}+(y-0)^{2}=a^{2}$	M1A1		
(b)	Subs $(4,-3)$	$\Rightarrow(4-a)^{2}+(-3-0)^{2}=a^{2}$		
$\Rightarrow 16-8 a+a^{2}+9=a^{2}$				
$\Rightarrow 25=8 a$				
$\Rightarrow a=\frac{25}{8}$			\quad M1	(2)
:---				

Mark parts (a) and (b) together. Award marks in (a) from (b) and vice versa, but see note
(a)

M1 Attempts to find the equation of C centre $(a, 0)$ radius a. Accept $(x \pm a)^{2}+y^{2}=a^{2}$ oe If the alternative form of the circle is used accept $x^{2}+y^{2} \pm 2 a x=a^{2}-a^{2}$
Allow for the M1 $(x \pm a)^{2}+(y \pm 0)^{2}=r^{2}$
A1 Writes C as $(x-a)^{2}+(y-0)^{2}=a^{2}$ or equivalent $x^{2}+y^{2}-2 a x=0$.
(b)

M1 Subs $x=4$ and $y=-3$ into their circle equation for C which must be of the form $(x \pm a)^{2}+(y \pm 0)^{2}=a^{2}$
dM1 Proceeds to a linear equation in ' a ' and reaches $a=\ldots$. Condone numerical slips
A1 $\quad a=\frac{25}{8} \quad$ Accept exact alternatives

Note: There are some candidates who write the equation of the circle as $(x-a)^{2}+(y-0)^{2}=r^{2}$ in part (a) This is M1 A0
However in part (b) they substitute $(4,-3)$ and write down $(4-a)^{2}+(-3)^{2}=a^{2}$
We will allow them to score all 3 marks in part (b).
Had they written $(x-a)^{2}+y^{2}=a^{2}$ in (b) we would allow them to score all 5 marks

Question		heme	Marks
13 (a)	See $(x \pm 1)^{2}+(y \pm 3)^{2}=r^{2}$ Attempt $\sqrt{(8-1)^{2}+(-2-(-3))^{2}}$ $\begin{aligned} & (8-1)^{2}+(-2-(-3))^{2} \\ & \quad(x-1)^{2}+(y+3)^{2},=50 \end{aligned}$	Or see $x^{2}+y^{2} \pm 2 x \pm 6 y+c=0$ Substitute $(8,-2)$ into equation $x^{2}+y^{2}-2 x+6 y-40=0$	M1 M1 A1, A1
	Gradient of $A P=\frac{1}{7}$ So gradient of tangent is -7 Equation of tangent is $(y+2)=$ $y=-7 x+54 \text { or } m=-7, \quad c=54$	-8)	B1 M1 dM1 A1
(c)	Way 1 $y=x+6$ meets circle when $(x-1)^{2}+(x+9)^{2}=50$ or when $(y-7)^{2}+(y+3)^{2}=50$ i.e. $2 x^{2}+16 x+32=0$ or when $2 y^{2}-8 y+8=0$ Solve to give x or $y=$ Substitute to give	Way 2 As tangent has gradient $1 A Q$ has gradient -1 and $\frac{y-(-3)}{x-1}=-1$ $y+x=-2$ Solve $y+x=-2$ with $y=x+6$ or alternatively solve $y+x=-2$ with the equation of the circle to give x or $y=$ (or $x=$) only	M1 A1 M1 dM1 A1 [5]
			13 marks
		Notes	
(a) M1 : Scored for centre at $(1,-3) \Rightarrow(x \pm 1)^{2}+(y \pm 3)^{2}=\ldots$ or $x^{2}+y^{2} \pm 2 x \pm 6 y+\ldots=0$ M1: Scored for an attempt at finding the radius or the radius ${ }^{2}$ (see scheme). It need not be in the equation It can be implied by $\sqrt{50}$ or $5 \sqrt{2}$ or 50 If the form $x^{2}+y^{2} \pm 2 x \pm 6 y+c=0$ is used it is for substituting $(8,-2)$ into the equation A1: LHS or RHS correct $(x-1)^{2}+(y+3)^{2},=\ldots$ or $(x \pm a)^{2}+(y \pm b)^{2},=50 x^{2}+y^{2}-2 x+6 y \ldots=0$ A1: Correct equation. Accept $(x-1)^{2}+(y+3)^{2}=50$ or $x^{2}+y^{2}-2 x+6 y-40=0$ or $x^{2}+y^{2}-2 x+6 y=40$ (b) B1: Obtain 1/7. Implied by use of -7 in their tangent M1: Uses negative reciprocal dM1: Linear equation through point $(8,-2)$ with their negative reciprocal gradient A1: cao (c) M1: Eliminates x or y from two relevant equations, that is whose intersection is Q. A1: Correct quadratic in x or in y M1: Solves (with usual rules) to give first variable. The first M must have been scored dM1: Substitute in either (relevant) equation to give second coordinate, dependent upon both previous M's A1: Correct answer accept $x=-4, y=2$. Withhold this if two answers given			

| Question |
| :---: | :---: | :---: | :---: |
| Number |\quad| Scheme |
| :---: | Marks

(c)	$8+4(1-3 c)-c^{2}=0$	Substitutes $x=2$ to give a correct unsimplified form of the equation.	M1
	$c^{2}+12 c-12=0$	Correct 3 term quadratic. Allow any equivalent form with the terms collected (may be implied)	A1
	$\begin{aligned} & (c+6)^{2}-36-12=0 \Rightarrow c=\ldots \\ & \text { or } \\ & c=\frac{-12 \pm \sqrt{12^{2}-4 \times 1 \times(-12)}}{2} \end{aligned}$	Solves their 3TQ by using the formula or completing the square only. This may be implied by a correct exact answer for their 3TQ. (May need to check)	M1
	$4 \sqrt{3}-6$	$c=4 \sqrt{3}-6$ or $c=-6+4 \sqrt{3}$ only	A1
			(4)
			(11 marks)

(a)

M1 For an attempt at $\left(\frac{1+7}{2}, \frac{4+8}{2}\right)$ May be implied by either correct coordinate
A1 $(4,6)$. No working is required, Correct answer scores both marks. Condone lack of brackets
(b)

M1 Scored for using Pythagoras' theorem to find the distance between their centre and a point. Look for an attempt at $\sqrt{\left('^{\prime}-1\right)^{2}+\left('^{\prime}-4\right)^{2}}$ or similar. If the original coordinates are used then there must be some attempt to halve.
A1 $=\sqrt{13} \quad$ Correct answer scores both marks
(c)

M1 For stating the equation of C_{2} is $x^{2}+y^{2}=r^{2}$ or $(x-0)^{2}+(y-0)^{2}=r^{2}$ for any ' r ' including an algebraic ' r ' Accept $x^{2}+y^{2}=k$ If a value of k is given then k must be positive
M1 Attempts either value of r Look for $\left(\sqrt{4^{\prime 2}+{ }^{\prime} 6^{\prime 2}} \pm\right.$ their $\left.r\right)$ Accept $r=\frac{\sqrt{4^{2}+6^{2}}}{2}$
A1 Either of $x^{2}+y^{2}=13$ or $x^{2}+y^{2}=117$
Allow for this mark variations like $(x-0)^{2}+(y-0)^{2}=\sqrt{13}^{2}$
A1 Both of $x^{2}+y^{2}=13$ and $x^{2}+y^{2}=117$. Equations must be simplified as seen here Any one correct equation will imply the first two M's.

Alt method to find equations using the intersections:
M1: As above
M1: Solves 'their' $y==^{\prime} \frac{3}{2} x$ with their $\left(x-4^{\prime}\right)^{2}+\left(y-'^{\prime}\right)^{2}=' 13^{\prime} \Rightarrow$ Intersections $(2,3)$ and $(6,9)$
So this time the method is scored for either $\sqrt{12^{\prime 2}+3^{\prime 2}}$ or $\sqrt{6^{\prime 2}+'^{\prime 2}}$
A1 A1 as before

Question Number	Scheme	Marks
13 (a)(i)	$(3,-4)$	B1
(a)(ii)	$\sqrt{30}$	B1
		[2]
(b)	Attempts $(6-3)^{2}+(k+4)^{2},<30$	M1,M1
	$k^{2}+8 k-5<0$	A1*
(c)	Solves quadratic by formula or completion of square to give $k=$	$\text { M1 } \quad \text { [3] }$
	$k=-4 \pm \sqrt{21}$	
	Chooses region between two values and deduces $-4-\sqrt{21}<k<-4+\sqrt{21}$	M1 Alcao
		[4] (9 marks

(a)(i)(ii)

B1 $\quad(3,-4)$ Accept as $x=, y=$ or even without the brackets
B1 $\sqrt{30}$ Do not accept decimals here but remember to isw
(b) This is scored M1 A1 A1 on e -pen. We are marking it M1 M1 A1

M1 Attempts to find the length or length ${ }^{2}$ from $P(6, k)$, to the centre of $C(3,-4)$ following through on their C. Look for, using a correct C, either $\left(6-3^{\prime}\right)^{2}+\left(k+4^{\prime}\right)^{2}$ or $\sqrt{\left(6-'^{\prime}\right)^{2}+\left(k+'^{\prime}\right)^{2}}$
Another way is to substitute $(6, k)$ into $(x-3)^{2}+(y+4)^{2}=30$ but it is very difficult to score either of the other two marks using this method.
M1 Forms an inequality by using the length from P to the centre of $C<$ the radius of C $(6-3)^{2}+(k+4)^{2}<30$. In almost all cases I would expect to see <30 before <0
Using the alternative method, they would also need the line $(6-3)^{2}+(k+4)^{2}<30$. (As if the point lies on another circle, the radius/distance would need to be smaller than 30)
A1* $\quad k^{2}+8 k-5<0$
This is a given answer and you must check that all aspects are correct. In most cases you should expect to see an intermediate line (with $<\mathbf{3 0}$) before the final answer appear with $<\mathbf{0}$.
(c)

M1 Solves the equation $k^{2}+8 k-5=0$ by formula or completing the square.
Factorisation to integer roots is not a suitable method in this case and scores M0.
The answers could just appear from a graphical calculator. Accept decimals for the M's only
A1 Accept $k=-4 \pm \sqrt{21}$ or exact equivalent $k=\frac{-8 \pm \sqrt{84}}{2}$
Do not accept decimal equivalents $k=-8.58,(+) 0.582 \mathrm{dp}$ for this mark
M1 Chooses inside region from their two roots. The roots could just appear or have been derived by factorisation.
A1 cao $-4-\sqrt{21}<k<-4+\sqrt{21} \quad$ Accept equivalents such as $(-4-\sqrt{21},-4+\sqrt{21})$, $k>-4-\sqrt{21}$ and $k<-4+\sqrt{21}$, even $k>-4-\sqrt{21}, k<-4+\sqrt{21}$
Accept for 3 out of $4[-4-\sqrt{21},-4+\sqrt{21}], k>-4-\sqrt{21}$ or $k<-4+\sqrt{21},-4-\sqrt{21} \leqslant k \leqslant-4+\sqrt{21}$
Do not accept $-4-\sqrt{21}<x<-4+\sqrt{21}$ for this final mark

Question number	Scheme	Marks
3	Obtain $(x \pm 10)^{2}$ and $(y \pm 8)^{2}$	M1
(a)	Obtain $(x-10)^{2}$ and $(y-8)^{2}$	A1
	Centre is $(10,8)$. N.B. This may be indicated on diagram only as $(10,8)$	A1 (3)
(b)	See $(x \pm 10)^{2}+(y \pm 8)^{2}=25\left(=r^{2}\right)$ or $\left(r^{2}=\right) " 100 "+" 64 "-139$	M1
	$r=5 \quad *$ (this is a printed answer so need one of the above two reasons)	A1 (2)
(c)	Use $x=13$ in either form of equation of circle and solve resulting quadratic to give $y=$ $\begin{aligned} & \text { e.g } \quad x=13 \Rightarrow(13-10)^{2}+(y-8)^{2}=25 \Rightarrow(y-8)^{2}=16 \\ & \text { or } 13^{2}+y^{2}-20 \times 13-16 y+139=0 \Rightarrow y^{2}-16 y+48=0 \end{aligned} \quad \text { so } y=$	M1
	$y=4$ or 12 (on EPEN mark one correct value as A1A0 and both correct as A1 A1)	A1, A1 (3)
(d)	Use of $r \theta$ with $r=5$ and $\theta=1.855$ (may be implied by 9.275)	
	Perimeter $P T Q=2 r+$ their arc $P Q$ (Finding perimeter of triangle is M0 here)	M1
	$=19.275$ or 19.28 or 19.3	A1 (3)
		11 marks
Alternatives (a)	Method 2: From $x^{2}+y^{2}+2 g x+2 f y+c=0$ centre is $(\pm g, \pm f)$	M1
OR	Method 3: Use any value of y to give two points (L and M) on circle. x co-ordinate of mid point of $L M$ is " 10 " and Use any value of x to give two points (P and Q) on circle. y co-ordinate of mid point of $P Q$ is " 8 " (Centre - chord theorem) . $(10,8)$ is M1A1A1	M1 A1 A1 (3)
(b)	Method 2: Using $\sqrt{g^{2}+f^{2}-c}$ or $\left(r^{2}=\right) " 100 "+" 64 "-139$ $r=5$ *	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
OR	Method 3: Use point on circle with centre to find radius. Eg $\sqrt{(13-10)^{2}+(12-8)^{2}}$ $r=5$ *	M1 A1 cao (2)
(c)	Divide triangle PTQ and use Pythagoras with $r^{2}-(13-" 10 ")^{2}=h^{2}$, then evaluate " $8 \pm h$ " - (N.B. Could use 3,4,5 Triangle and 8 ± 4). Accuracy as before	M1
Notes (a) (b)	Mark (a) and (b) together M1 as in scheme and can be implied by $(\pm 10, \pm 8)$. Correct centre $(\mathbf{1 0}, \mathbf{8})$ implies M1 M1 for a correct method leading to $r=\ldots$, or $r^{2}=" 100 "+" 64 "-139$ (not $139-" 10$ or for using equation of circle in $\underline{(x \pm 10)^{2}}+\underline{(y \pm 8)^{2}}=k^{2}$ form to identify $r=$ $\mathbf{3}^{\text {rd }} \mathbf{A 1} \boldsymbol{r}=5$ (NB This is a given answer so should follow $k^{2}=25$ or $r^{2}=100+64-$ Special case: if centre is given as $(-10,-8)$ or $(10,-8)$ or $(-10,8)$ allow M1A1 for $r=5$ wo as $r^{2}=100+64-139$	1A1 "-" 64") 39) ked correctly
(d)	Full marks available for calculation using major sector so Use of $r \theta$ with $r=5$ an leading to perimeter of 32.14 for major sector	$\theta=4.428$

Question	Scheme	Marks	AOs
$8 \text { (a) }$ Way 1	$H=A x(40-x) \quad\{$ or $H=A x(x-40)\}$	M1	3.3
	$x=20, H=12 \Rightarrow 12=A(20)(40-20) \Rightarrow A=\frac{3}{100}$	dM1	3.1b
	$H=\frac{3}{100} x(40-x)$ or $H=-\frac{3}{100} x(x-40)$	A1	1.1b
		(3)	
(a) Way 2	$H=12-\lambda(x-20)^{2} \quad\left\{\right.$ or $\left.H=12+\lambda(x-20)^{2}\right\}$	M1	3.3
	$x=40, H=0 \Rightarrow 0=12-\lambda(40-20)^{2} \Rightarrow \lambda=\frac{3}{100}$	dM1	3.1b
	$H=12-\frac{3}{100}(x-20)^{2}$	A1	1.1b
		(3)	
(a) Way 3	$\begin{gathered} \left.H=a x^{2}+b x+c \quad \text { (or deduces } H=a x^{2}+b x\right) \\ \text { Both } x=0, H=0 \Rightarrow 0=0+0+c \Rightarrow c=0 \\ \text { and either } x=40, H=0 \Rightarrow 0=1600 a+40 b \\ \text { or } x=20, H=12 \Rightarrow 12=400 a+20 b \\ \text { or } \frac{-b}{2 a}=20\{\Rightarrow b=-40 a\} \end{gathered}$	M1	3.3
	$\begin{gathered} b=-40 a \Rightarrow 12=400 a+20(-40 a) \Rightarrow a=-0.03 \\ \text { so } b=-40(-0.03)=1.2 \end{gathered}$	dM1	3.1b
	$H=-0.03 x^{2}+1.2 x$	A1	1.1b
		(3)	
(b)	$\begin{gathered} \{H=3 \Rightarrow\} 3=\frac{3}{100} x(40-x) \Rightarrow x^{2}-40 x+100=0 \\ \text { or }\{H=3 \Rightarrow\} 3=12-\frac{3}{100}(x-20)^{2} \Rightarrow(x-20)^{2}=300 \end{gathered}$	M1	3.4
	e.g. $x=\frac{40 \pm \sqrt{1600-4(1)(100)}}{2(1)}$ or $\quad x=20 \pm \sqrt{300}$	dM1	1.1b
	$\{$ chooses $20+\sqrt{300} \Rightarrow\}$ greatest distance $=$ awrt 37.3 m	A1	3.2a
		(3)	
(c)	Gives a limitation of the model. Accept e.g. - the ground is horizontal - the ball needs to be kicked from the ground - the ball is modelled as a particle - the horizontal bar needs to be modelled as a line - there is no wind or air resistance on the ball - there is no spin on the ball - no obstacles in the trajectory (or path) of the ball - the trajectory of the ball is a perfect parabola	B1	3.5b
		(1)	
(7 marks)			

Question	Scheme	Marks	AOs
7	$\mathfrak{f} y$ is the total cost of making x bars of soap Bars of soap are sold for $£ 2$ each		
(a)	$y=k x+c \quad$ \{where k and c are constants\}	B1	3.3
	Note: Work for (a) cannot be recovered in (b) or (c)	(1)	
(b) Way 1	Either - $x=800 \Rightarrow y=2(800)-500\{=1100 \Rightarrow(x, y)=(800,1100)\}$ - $x=300 \Rightarrow y=2(300)+80\{=680 \Rightarrow(x, y)=(300,680)\}$	M1	3.1b
	Applies (800, their 1100) and (300 , their 680) to give two equations $1100=800 k+c$ and $680=300 k+c \Rightarrow k, c=\ldots$	dM1	1.1b
	Solves correctly to find $k=0.84, c=428$ and states $y=0.84 x+428 *$	A1*	2.1
	Note: the answer $y=0.84 x+428$ must be stated in (b)	(3)	
$\begin{gathered} \text { (b) } \\ \text { Way } 2 \end{gathered}$	Either - $x=800 \Rightarrow y=2(800)-500\{=1100 \Rightarrow(x, y)=(800,1100)\}$ - $x=300 \Rightarrow y=2(300)+80\{=680 \Rightarrow(x, y)=(300,680)\}$	M1	3.1b
	Complete method for finding both $k=\ldots$ and $c=\ldots$ $\begin{gathered} \text { e.g. } k=\frac{1100-680}{800-300}\{=0.84\} \\ (800,1100) \Rightarrow 1100=800(0.84)+c \Rightarrow c=\ldots \end{gathered}$	dM1	1.1b
	Solves to find $k=0.84, c=428$ and states $y=0.84 x+428$ *	A1*	2.1
	Note: the answer $y=0.84 x+428$ must be stated in (b)	(3)	
$\begin{gathered} \text { (b) } \\ \text { Way } 3 \end{gathered}$	Either $\begin{aligned} & \text { - } x=800 \Rightarrow y=2(800)-500\{=1100 \Rightarrow(x, y)=(800,1100)\} \\ & \text { - } x=300 \Rightarrow y=2(300)+80\{=680 \Rightarrow(x, y)=(300,680)\} \end{aligned}$	M1	3.1 b
	$\begin{array}{ll} \{y=0.84 x+428 \Rightarrow\} & \begin{array}{l} x=800 \Rightarrow y=(0.84)(800)+428=1100 \\ \\ \\ x=300 \Rightarrow y=(0.84)(300)+428=680 \end{array} \end{array}$	dM1	1.1b
	Hence $y=0.84 x+428$ *	A1*	2.1
		(3)	
(c)	Allow any of $\{0.84$, in $£ s\}$ represents - the cost of \{making\} each extra bar \{of soap\} - the direct cost of \{making\} a bar \{of soap\} - the marginal cost of \{making\} a bar \{of soap\} - the cost of \{making\} a bar \{of soap\} (Condone this answer) Note: Do not allow - $\{0.84$, in $£ s\}$ is the profit per bar $\{$ of soap $\}$ - $\{0.84$, in $£ s\}$ is the (selling) price per bar \{of soap\}	B1	3.4
		(1)	
$\begin{gathered} (d) \\ \text { Way } 1 \end{gathered}$	\{Let n be the least number of bars required to make a profit\}		
	$\begin{gathered} 2 n=0.84 n+428 \Rightarrow n=\ldots \\ \text { (Condone } 2 x=0.84 x+428 \Rightarrow x=\ldots \text {) } \end{gathered}$	M1	3.4
	Answer of 369 \{bars\}	A1	3.2a
		(2)	
(d)$\text { Way } 2$	- Trial 1: $n=368 \Rightarrow y=(0.84)(368)+428 \Rightarrow y=737.12$ \{revenue $=2(368)=736$ or loss $=1.12\}$	M1	3.4
	\{revenue $=2(369)=738$ or profit $=0.04\}$ leading to an answer of 369 \{bars\}	A1	3.2a
		(2)	
(7 marks)			

