Question	Scheme	Marks	AOs
6 (a)	Deduces that gradient of <i>PA</i> is $-\frac{1}{2}$	M1	2.2a
	Finding the equation of a line with gradient " $-\frac{1}{2}$ " and point (7,5) $y-5 = -\frac{1}{2}(x-7)$	M1	1.1b
	Completes proof $2y + x = 17 *$	A1*	1.1b
		(3)	
(b)	Solves $2y + x = 17$ and $y = 2x + 1$ simultaneously	M1	2.1
	P = (3,7)	A1	1.1b
	Length $PA = \sqrt{(3-7)^2 + (7-5)^2} = (\sqrt{20})$	M1	1.1b
	Equation of C is $(x-7)^2 + (y-5)^2 = 20$	A1	1.1b
		(4)	
(c)	Attempts to find where $y = 2x + k$ meets <i>C</i> using $\overrightarrow{OA} + \overrightarrow{PA}$	M1	3.1a
	Substitutes their (11,3) in $y = 2x + k$ to find k	M1	2.1
	k = -19	A1	1.1b
		(3)	
			(10 marks)
(c)	Attempts to find where $y = 2x + k$ meets <i>C</i> via simultaneous equations proceeding to a 3TQ in <i>x</i> (or <i>y</i>) FYI $5x^2 + (4k - 34)x + k^2 - 10k + 54 = 0$	M1	3.1a
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1
	k = -19	A1	1.1b
		(3)	
Notes: (a)	·		
M1: Uses the	e idea of perpendicular gradients to deduce that gradient of <i>PA</i> is $-\frac{1}{2}$.	Condone $-\frac{1}{2}$	<i>x</i> if
followed by correct work. You may well see the perpendicular line set up as $y = -\frac{1}{2}x + c$ which scored this mark			
MI: Award	for the method of finding the equation of a line with a changed gradient	and the point	(7,5)

So sight of $y-5=\frac{1}{2}(x-7)$ would score this mark

If the form y = mx + c is used expect the candidates to proceed as far as c = ... to score this mark.

Question	Scheme	Marks	AOs
14 (a)	<i>C</i> is $(x-r)^{2} + (y-r)^{2} = r^{2}$ or $x^{2} + y^{2} - 2rx - 2ry + r^{2} = 0$	В1	2.2a
	$y = 12 - 2x, \ x^{2} + y^{2} - 2rx - 2ry + r^{2} = 0$ $\Rightarrow x^{2} + (12 - 2x)^{2} - 2rx - 2r(12 - 2x) + r^{2} = 0$ or	M1	1.1b
	$y = 12 - 2x, \ (x - r)^{2} + (y - r)^{2} = r^{2}$ $\Rightarrow (x - r)^{2} + (12 - 2x - r)^{2} = r^{2}$		
	$x^{2} + 144 - 48x + 4x^{2} - 2rx - 24r + 4rx + r^{2} = 0$ $\Rightarrow 5x^{2} + (2r - 48)x + (r^{2} - 24r + 144) = 0 *$	A1*	2.1
		(3)	
(b)	$b^{2} - 4ac = 0 \Longrightarrow (2r - 48)^{2} - 4 \times 5 \times (r^{2} - 24r + 144) = 0$	M1	3.1a
	$r^2 - 18r + 36 = 0$ or any multiple of this equation	A1	1.1b
	$\Rightarrow (r-9)^2 - 81 + 36 = 0 \Rightarrow r = \dots$	dM1	1.1b
	$r = 9 \pm 3\sqrt{5}$	A1	1.1b
		(4)	
		(7	marks)

Question Number	Scheme	Marks
15. (a) (b)	gradient = $\frac{11-3}{6-0}$, = $\frac{4}{3}$ Mid-point of $XY = (3, 7)$ ZM has gradient $-\frac{1}{m}$ $\left(=-\frac{3}{4}\right)$	M1 A1 [2] M1 A1 B1ft
	Either: $y - 7'' = -\frac{3}{4}(x - 3'')$ or: $y = -\frac{3}{4}x + c$ and $7'' = -\frac{3}{4}(3'') + c \implies c = 9\frac{1}{4}$	M1
	$4y + 3x - 37 = 0$ or $y - 7 = -\frac{3}{4}(x - 3)$ Or $y = -\frac{3}{4}x + 9\frac{1}{4}$	A1 [5]
(c)	Substitute $y = 10$ into their line equation to give $x =$	M1
	x = -1	A1 [2]
(d)	$(r^{2}) = (-1-0)^{2} + (10-3)^{2} $ or $(r^{2}) = (-1-6)^{2} + (10-11)^{2}$ $r^{2} = 50$ $"50" = (x \pm "(-1)")^{2} + (y \pm "10")^{2}$ $"50" = (x - "(-1)")^{2} + (y - "10")^{2}$ $x^{2} + y^{2} + 2x - 20y + 51 = 0$	M1 A1 M1 A1ft A1 [5] (14 marks)
	Alternative methods to part (d) (i)Use equation $x^2 + y^2 + ax + by + c = 0$ and substitute three points, usually (0,3), (6,11) and another point on the circle maybe (-2,17) or (-8,9) - not point Z Solves simultaneous equations a = 2, b = -20 and $c = 51(ii) Uses centre to write a = and b = (doubles x coordinate and y coordinate respectively,\pm"2" and \pm"20")Obtains a= 2 and b = -20 (or just writes these values down so these answers imply M1A1)Completes method to find c, (could substitute one of the points on the circle) or could find rAccurate work e.g. r^2 = 50 or e.g. x^2 + y^2 + 2x - 20y = (-8)^2 + 9^2 + 2x - 8 - 20 \times 9 =c = 51$	M1 dM1 A1,A1,A1 M1 A1 dM1 A1 A1 A1

Question number	Scheme	Marks
7 (a)	Obtain $(x \pm 5)^2$ and $(y \pm 3)^2$	M1
	Centre is (-5, 3).	A1 [2]
(b)	See $(x \pm 5)^2 + (y \pm 3)^2 = 16 (= r^2)$ or $(r^2 =) "25" + "9" - 18$	M1
	<i>r</i> = 4	A1 [2]
(c)	Use $x = -3$ in either form of equation of circle to obtain simplified quadratic in y	M1
	e.g $x = -3 \Rightarrow (-3+5)^2 + (y-3)^2 = 16 \Rightarrow (y-3)^2 = 12$	
	or $(-3)^2 + y^2 + 10 \times (-3) - 6y + 18 = 0 \Rightarrow y^2 - 6y - 3 = 0$	
	solve resulting quadratic to give $y =$	M1
	$y = 3 \pm 2\sqrt{3}$	A1, A1 [4]
		8 marks
Alternatives (a)	<i>Method 2:</i> From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ Centre is $(-g, -f)$, and so centre is $(-5, 3)$.	M1 A1
OR	<i>Method 3:</i> Use any value of y to give two points (L and M) on circle. x co- ordinate of mid point of LM is "-5" and Use any value of x to give two points (P and Q) on circle. y co-ordinate of mid point of PQ is "3" (Centre – chord theorem). (-5, 3) is M1A1	M1 A1 (2)
(b)	Method 2: Using $\sqrt{g^2 + f^2 - c}$ or $(r^2 =)$ "25"+"9"-18 $r = 4$	M1 A1 (2)
(c)		
	<i>Method 2</i> : Divide triangle PTQ and use Pythagoras with $r^2 - (-3 - "-5")^2 = h^2$, then evaluate $"3 \pm h"$ - then get $3 \pm 2\sqrt{3}$	M1 M1 A1 A1 (4)
	Notes	

Question Number	Scheme	Marks
12(a)	Writes <i>C</i> as $(x-a)^2 + (y-0)^2 = a^2$	M1A1
(b)	Subs $(4, -3) \implies (4-a)^2 + (-3-0)^2 = a^2$	M1 (2)
	$\Rightarrow 16 - 8a + a^2 + 9 = a^2$ $\Rightarrow 25 = 8a$	
	$\Rightarrow a = \frac{25}{8}$	dM1A1 (3)
	o	(5 marks)

Mark parts (a) and (b) together. Award marks in (a) from (b) and vice versa, but see note (a)

M1 Attempts to find the equation of *C* centre (*a*,0) radius *a*. Accept $(x \pm a)^2 + y^2 = a^2$ oe If the alternative form of the circle is used accept $x^2 + y^2 \pm 2ax = a^2 - a^2$ Allow for the M1 $(x \pm a)^2 + (y \pm 0)^2 = r^2$

A1 Writes C as
$$(x-a)^2 + (y-0)^2 = a^2$$
 or equivalent $x^2 + y^2 - 2ax = 0$.

- (b)
- M1 Subs x = 4 and y = -3 into their circle equation for *C* which must be of the form $(x \pm a)^2 + (y \pm 0)^2 = a^2$
- dM1 Proceeds to a linear equation in 'a' and reaches a=... Condone numerical slips A1 $a = \frac{25}{8}$ Accept exact alternatives

Note: There are some candidates who write the equation of the circle as $(x-a)^2 + (y-0)^2 = r^2$ in part (a) This is M1 A0 However in part (b) they substitute (4,-3) and write down $(4-a)^2 + (-3)^2 = a^2$ We will allow them to score all 3 marks in part (b).

Had they written $(x-a)^2 + y^2 = a^2$ in (b) we would allow them to score all 5 marks

Question		Scheme	Marks
13 (a)	See $(x\pm 1)^2 + (y\pm 3)^2 = r^2$	Or see $x^2 + y^2 \pm 2x \pm 6y + c = 0$	M1
	Attempt $\sqrt{(8-1)^2 + (-2-(-3))^2}$ or (8-1) ² + (-2-(-3)) ²	Substitute $(8, -2)$ into equation	M1
	$(x-1)^2 + (y+3)^2 = 50$	$x^2 + y^2 - 2x + 6y - 40 = 0$	A1, A1 [4
(b)	Gradient of $AP = \frac{1}{7}$		B1
	So gradient of tangent is -7		M1 dM1
	Equation of tangent is $(y + 2) = -$	Equation of tangent is $(y+2) = -7(x-8)$	
	y = -7x + 54 or $m = -7$, $c = 54$		A1 [4
	Way 1	Way 2	
(c)	y = x + 6 meets circle when $(x - 1)^{2} + (x + 9)^{2} = 50$ or when $(y - 7)^{2} + (y + 3)^{2} = 50$	As tangent has gradient 1 AQ has gradient -1 and $\frac{y - (-3)}{x - 1} = -1$	M1
	i.e. $2x^2 + 16x + 32 = 0$ or when $2y^2 - 8y + 8 = 0$	y + x = -2	A1
	Solve to give x or $y =$	Solve $y + x = -2$ with $y = x + 6$ or alternatively solve $y + x = -2$ with the equation of the circle to give x or $y =$	M1
	Substitute to give y	y = (or x =)	dM1
	(-4, 2) only		A1
			13 marks
(a)		Notes	
M1 : Score M1: Scored It need If the :		or the radius ² (see scheme). <u>blied</u> by $\sqrt{50}$ or $5\sqrt{2}$ or 50 l it is for substituting (8,-2) into the equation	
		. Or $(x \pm a)^2 + (y \pm b)^2 = 50 x^2 + y^2 - 2x + 6y$.	
(b)	ct equation. Accept $(x - 1)^2 + (y + 3)^2$	$= 50 \text{ or } x^2 + y^2 - 2x + 6y - 40 = 0 \text{ or } x^2 + y^2 - 2x + 6y - 2$	2x + 6y = 40
B1 : Obtair M1: Uses IM1: Linea	In $1/7$. Implied by use of -7 in their negative reciprocal ar equation through point (8, -2) with	-	
	nates x or y from two relevant equations $x = x + y$	ons, that is whose intersection is Q .	
M1: Solves	· · ·	ble. The first M must have been scored give second coordinate, dependent upon b	oth previous
1M1: Subs M's		8	our provious

Question Number	Scheme	Marks
13(a)(i)		
	$(0,c^2)$	
	(-c, 0)/ $(c, 0)$	
	Or Or shape anywhere but not	
	/ Or shape anywhere but not The maximum must be smooth and not form a point and the branches must not	
	clearly turn back in on themselves.	
	or	D1
	A continuous graph passing through or touching at the points $(-c, 0)$, $(c, 0)$ and	B1
	$(0, c^2)$. They can appear on their sketch or within the body of the script but	
	there must be a sketch. Allow these marked as $-c$, c and c^2 in the correct	
	places. Allow $(0, -c)$, $(0, c)$ and $(c^2, 0)$ as long as they are marked in the correct	
	places. If there is any ambiguity, the sketch takes precedence.	
	A fully correct diagram with the curve in the correct position and the intercepts and shape as described above. The maximum must be on the <i>y</i> -axis	B1
	and the branches must extend below the x-axis.	DI
(a)(ii)	There must be a sketch to score any marks in (a)	
(*)(**)	\wedge / Shape. A positive cubic with only	
	one maximum and one minimum. The	B1
	curve must be smooth at the maximum and	DI
	at the minimum (not pointed).	
	A smooth curve that touches or meets the	
	x-axis at the origin and $(3c, 0)$ in the	
	correct place and no other intersections.	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B1
		DI
	marked in the correct place. May appear on their sketch or within the body of the	
	script. If there is any ambiguity, the sketch	
	takes precedence.	
	Maximum at the origin (allow the	B1
	maximum to form a point or cusp)	
	There must be a sketch to score any marks in (a)	(5)
(b)	Intersect when $x^2(x-3c) = c^2 - x^2 \Rightarrow x^3 - 3cx^2 = c^2 - x^2$	
	Sets equations equal to each other and attempts to multiply out the bracket or	M1
	vice versa	
	Collects to one side (may be implied), forterises the x^2 terms and obtains printed	
	factorises the x^2 terms and obtains printed answer with no errors. There must be an	
	$x^3 + x^2 - 3cx^2 - c^2 = 0$ intermediate line of working.	
	$\Rightarrow x^{3} + (1-3c)x^{2} - c^{2} = 0^{*}$ Allow $x^{3} + x^{2}(1-3c) - c^{2} = 0$ or	A1*
	$\Rightarrow x^{3} + (1 - 3c)x^{2} - c^{2} = 0^{*}$ Allow $x^{2} + x^{2}(1 - 3c) - c^{2} = 0$ or $0 = x^{3} + (1 - 3c)x^{2} - c^{2}$ or	
	$0 = x^3 + x^2(1 - 3c) - c^2$	
		(2)

(c)	$8 + 4(1 - 3c) - c^2 = 0$	Substitutes $x = 2$ to give a correct unsimplified form of the equation.	M1
	$c^2 + 12c - 12 = 0$	Correct 3 term quadratic. Allow any equivalent form with the terms collected (may be implied)	A1
	$(c+6)^{2} - 36 - 12 = 0 \Longrightarrow c = \dots$ or $c = \frac{-12 \pm \sqrt{12^{2} - 4 \times 1 \times (-12)}}{2}$	Solves their 3TQ by using the formula or completing the square only . This may be implied by a correct exact answer for their 3TQ. (May need to check)	M1
	$4\sqrt{3}-6$	$c = 4\sqrt{3} - 6$ or $c = -6 + 4\sqrt{3}$ only	A1
			(4)
			(11 marks)

Number	Scheme	Marks
14 (a)	$\left(\frac{1+7}{2},\frac{4+8}{2}\right) = (4,6)$	M1A1
		(2)
(b)	$\frac{\sqrt{(7-1)^2 + (8-4)^2}}{2} \text{ Or } \sqrt{(4'-1)^2 + (6'-4)^2} \text{ Or } \sqrt{(7-4')^2 + (8-6')^2}$	M1
	(Radius of circle) = $\sqrt{13}$	A1
(c)	Equation of C ₂ is $x^2 + y^2 = r^2$	(2) M1
	Attempts either value of r as $\left(\sqrt{4'^2 + 6'^2} \pm \text{their } r\right)$	M1
	When $r = \sqrt{52} - \sqrt{13} = \sqrt{13} \implies x^2 + y^2 = 13$	A1
	When $r = \sqrt{52} + \sqrt{13} = 3\sqrt{13} \implies x^2 + y^2 = 117$	A1
		(4) (8marks)
M1 For	an attempt at $\left(\frac{1+7}{2}, \frac{4+8}{2}\right)$ May be implied by either correct coordinate	
A1 $(4, (b))$ M1 Sco an be A1 =, (c) M1 For	6). No working is required, Correct answer scores both marks. Condone lack ored for using Pythagoras' theorem to find the distance between their centre ar attempt at $\sqrt{('4'-1)^2 + ('6'-4)^2}$ or similar. If the original coordinates are use some attempt to halve. $\sqrt{13}$ Correct answer scores both marks	nd a point. Look for d then there must r' including an
A1 $(4, (b))$ M1 Sco an be A1 =, (c) M1 For alg	6). No working is required, Correct answer scores both marks. Condone lack ored for using Pythagoras' theorem to find the distance between their centre ar attempt at $\sqrt{('4'-1)^2 + ('6'-4)^2}$ or similar. If the original coordinates are use some attempt to halve. $\sqrt{13}$ Correct answer scores both marks $\sqrt{13}$ correct answer scores both marks $\sqrt{13}$ stating the equation of C ₂ is $x^2 + y^2 = r^2$ or $(x-0)^2 + (y-0)^2 = r^2$ for any ' <i>k</i> ebraic ' <i>r</i> ' Accept $x^2 + y^2 = k$ If a value of <i>k</i> is given then <i>k</i> must be positive	nd a point. Look for d then there must r' including an e
A1 $(4,$ (b) M1 Sco an be A1 = $\sqrt{(c)}$ M1 For alg M1 Att	6). No working is required, Correct answer scores both marks. Condone lack ored for using Pythagoras' theorem to find the distance between their centre ar attempt at $\sqrt{('4'-1)^2 + ('6'-4)^2}$ or similar. If the original coordinates are use some attempt to halve. $\sqrt{13}$ Correct answer scores both marks	nd a point. Look for d then there must r' including an e
A1 $(4,$ (b) M1 Sco an be A1 =, (c) M1 For alg M1 Att A1 Eit	6). No working is required, Correct answer scores both marks. Condone lack ored for using Pythagoras' theorem to find the distance between their centre ar attempt at $\sqrt{('4'-1)^2 + ('6'-4)^2}$ or similar. If the original coordinates are use some attempt to halve. $\sqrt{13}$ Correct answer scores both marks r stating the equation of C ₂ is $x^2 + y^2 = r^2$ or $(x-0)^2 + (y-0)^2 = r^2$ for any 'we braic 'r' Accept $x^2 + y^2 = k$ If a value of k is given then k must be positive empts either value of r Look for $(\sqrt{(4'^2+(6')^2 \pm 1)} \pm 1)^2$ Accept $r = \frac{\sqrt{4^2+6}}{2}$	nd a point. Look for d then there must r' including an e

M1: Solves 'their' $y = \left(\frac{3}{2}\right)^{2} x$ with their $(x - 4')^{2} + (y - 6')^{2} = (13') \Rightarrow$ Intersections (2,3) and (6,9)

So this time the method is scored for either $\sqrt{2'^2 + 3'^2}$ or $\sqrt{6'^2 + 9'^2}$ A1 A1 as before

Question Number	Scheme	Marks
13 (a)(i)	(3,-4)	B1
(a)(ii)	$\sqrt{30}$	B1
(b)	Attempts $(6-3)^2 + (k+4)^2$, < 30	[2] M1,M1
	$k^2 + 8k - 5 < 0$	A1* [3]
(c)	Solves quadratic by formula or completion of square to give $k = k = -4 \pm \sqrt{21}$	M1 A1
	Chooses region between two values and deduces $-4 - \sqrt{21} < k < -4 + \sqrt{21}$	M1 A1 cao
		[4] (9 marks
(a)(i)(ii) B1	(3,-4) Accept as $x = , y =$ or even without the brackets	
B1	$\sqrt{30}$ Do not accept decimals here but remember to isw	
(b)	This is scored M1 A1 A1 on e -pen. We are marking it M1 M1 A1	
M1	Attempts to find the length or length ² from $P(6,k)$, to the centre of $C(3,-4)$ following the	rough on
	their C. Look for, using a correct C, either $(6-'3')^2 + (k+'4')^2$ or $\sqrt{(6-'3')^2 + (k+'4')^2}$	
	Another way is to substitute $(6, k)$ into $(x-3)^2 + (y+4)^2 = 30$ but it is very difficult to see	re either
M1	of the other two marks using this method. Forms an inequality by using the length from P to the centre of $C <$ the radius of C	
	$(6-3)^2 + (k+4)^2 < 30$. In almost all cases I would expect to see < 30 before < 0	
	Using the alternative method, they would also need the line $(6-3)^2 + (k+4)^2 < 30$. (As if t	he point
A1*	lies on another circle, the radius/distance would need to be smaller than 30) $k^2 + 8k - 5 < 0$ This is a given answer and you must check that all aspects are correct. In most cases y	you should
	expect to see an intermediate line (with < 30) before the final answer appear with < 0 .	
(c) M1	Solves the equation $k^2 + 8k - 5 = 0$ by formula or completing the square. Factorisation to integer roots is not a suitable method in this case and scores M0. The answers could just appear from a graphical calculator. Accept decimals for the M's only	у
A1	Accept $k = -4 \pm \sqrt{21}$ or exact equivalent $k = \frac{-8 \pm \sqrt{84}}{2}$	
M1	Do not accept decimal equivalents $k = -8.58$, (+)0.58 2dp for this mark Chooses inside region from their two roots. The roots could just appear or have been derived by factorisation.	
A1	cao $-4 - \sqrt{21} < k < -4 + \sqrt{21}$ Accept equivalents such as $(-4 - \sqrt{21}, -4 + \sqrt{21})$, $k > -4 - \sqrt{21}$ and $k < -4 + \sqrt{21}$, even $k > -4 - \sqrt{21}$, $k < -4 + \sqrt{21}$	
	Accept for 3 out of 4 $\begin{bmatrix} -4 - \sqrt{21}, -4 + \sqrt{21} \end{bmatrix}$, $k > -4 - \sqrt{21}$ or $k < -4 + \sqrt{21}, -4 - \sqrt{21} \le k \le -4 + \sqrt{21}$	
	Do not accept $-4 - \sqrt{21} < x < -4 + \sqrt{21}$ for this final mark	

Question Number	Scheme		Marks
3.	<i>P</i> (7, 8) and <i>Q</i> (10, 13)		
(a)	$\{PQ =\} \sqrt{(7-10)^2 + (8-13)^2} \text{ or } \sqrt{(10-7)^2}$	$\frac{1}{12} + (13-8)^2$ Applies distance formula. Can be implied.	M1
	$\{PQ\} = \sqrt{34}$	$\sqrt{34}$ or $\sqrt{17}.\sqrt{2}$	A1
(b) Way 1	$(x-7)^{2} + (y-8)^{2} = 34 \left(\operatorname{or} \left(\sqrt{34} \right)^{2} \right)$	$(x \pm 7)^2 + (y \pm 8)^2 = k,$ where k is a positive value.	M1
li ugʻz		$(x-7)^2 + (y-8)^2 = 34$	A1 oe
(b)	$x^2 + y^2 - 14x - 16y + 79 = 0$	$x^{2} + y^{2} \pm 14x \pm 16y + c = 0$, where <i>c</i> is any <u>value</u> < 113.	[2] M1
Way 2		$x^2 + y^2 - 14x - 16y + 79 = 0$	A1 oe
			[2]
(c) Way 1	$\{\text{Gradient of radius}\} = \frac{13-8}{10-7} \text{ or } \frac{5}{3}$	This must be seen or implied in part (c).	B1
	1(3)	Using a perpendicular gradient method on their	1
	Gradient of tangent $= -\frac{1}{m}\left(=-\frac{3}{5}\right)$	gradient. So Gradient of tangent $= -\frac{1}{\text{gradient of radius}}$	M1
	$y - 13 = -\frac{3}{5}(x - 10)$	y - 13 = (their changed gradient)(x - 10)	M1
	3x + 5y - 95 = 0	3x + 5y - 95 = 0 o.e.	A1
(c) Way 2	$2(x-7) + 2(y-8)\frac{dy}{dx} = 0$	Correct differentiation (or equivalent). Seen or implied	[4] B1
	$2(10-7) + 2(13-8)\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{3}{5}$	Substituting both $x = 10$ and $y = 13$ into a valid differentiation to find a value for $\frac{dy}{dx}$	M1
	$y - 13 = -\frac{3}{5}(x - 10)$	y - 13 = (their gradient)(x - 10)	M1
	3x + 5y - 95 = 0	3x + 5y - 95 = 0 o.e.	A1
(c)		10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0	[4] B1
Way 3	10x + 13y - 7(x + 10) - 8(y + 13) + 79 = 0	10x + 13y - 7(x + 10) - 8(y + 13) + c = 0 where c is any value <113	M2
	3x + 5y - 95 = 0	3x + 5y - 95 = 0 o.e.	Al
			[4] 8

Question Number	Scheme		Marks
INUITIDEI	Mark (a) and (b) together		
9. (a)	$OQ^{2} = (6\sqrt{5})^{2} + 4^{2} \text{ or } OQ = \sqrt{(6\sqrt{5})^{2} + 4^{2}} \{= 14\}$	Uses the addition form of Pythagoras on $6\sqrt{5}$ and 4. Condone missing brackets on $(6\sqrt{5})^2$ (Working or 14 may be seen on the diagram)	M1
	$y_Q = \sqrt{14^2 - 11^2}$	$y_Q = \sqrt{(\text{their } OQ)^2 - 11^2}$ Must include $$ and is dependent on the first M1 and requires OQ > 11	d M1
	$=\sqrt{75}$ or $5\sqrt{3}$	$\sqrt{75}$ or $5\sqrt{3}$	A1cso
			[3]
(b)	$(x-11)^2 + (y-5\sqrt{3})^2 = 16$	M1: $(x \pm 11)^2 + (y \pm \text{their } k)^2 = 4^2$ Equation must be of this form and must use x and y not other letters. k could be their last answer to part (a). Allow their $k \neq 0$ or just the letter k. A1: $(x - 11)^2 + (y - 5\sqrt{3})^2 = 16$ or $(x - 11)^2 + (y - 5\sqrt{3})^2 = 4^2$ NB $5\sqrt{3}$ must come from correct work in (a) and allow awrt 8.66	- M1A1
	Allow in expanded form for	_	
	e.g. $x^2 - 22x + 121 + y^2 - 10^{-3}$	$\sqrt{3}y + 75 = 16$	
			[2] Total 5
	Watch ou	t for:	101815
	(a) $OQ = \sqrt{(6\sqrt{5})^2}$ $y_Q = \sqrt{46 - 11^2}$ M $y_Q = \sqrt{72}$ (b) $(x - 11)^2 + (y - 5)$	10 (OQ < 11) 5 A0	

5.			
(a)			
(i)	The centre is at (10, 12)	B1: $x = 10$ B1: $y = 12$	B1 B1
(ii)	Uses $(x-10)^2 + (y-12)^2 =$	$-195 + 100 + 144 \Longrightarrow r = \dots$	M1
	Completes the square for both x and y in an attempt to find r. $(x \pm "10")^2 \pm a$ and $(y \pm "12")^2 \pm b$ and $+195 = 0, (a, b \neq 0)$ Allow errors in obtaining their r^2 but must find square root A correct numerical expression for r		
	$r = \sqrt{10^2 + 12^2 - 195}$	including the square root and can implied by a correct value for r	A1
	<i>r</i> = 7	Not $r = \pm 7$ unless $- 7$ is rejected	A1
			(5)
	Compares the given equation with $x^{2} + y^{2} + 2gx + 2fy + c = 0$ to write	B1: $x = 10$	B1B1
(a) Way 2	down centre $(-g, -f)$ i.e. (10, 12)	B1: <i>y</i> = 12	DIDI
·	Uses $r = \sqrt{(\pm "10")^2 + (\pm "12")^2 - c}$		M1
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for r	A1
	r = 7		A1
			(5)
(b)	$MN = \sqrt{(25 - "10")^2 + (32 - "12")^2}$	Correct use of Pythagoras	M1
	$MN\left(=\sqrt{625}\right)=25$		A1
			(2)
(c)	$NP = \sqrt{("25"^2 - "7"^2)}$	$NP = \sqrt{(MN^2 - r^2)}$	M1
	$NP\left(=\sqrt{576}\right)=24$		A1
(c) Way 2	$\cos(NMP) = \frac{7}{"25"} \Rightarrow NP = "25" \sin(NP)$	MP) Correct strategy for finding NP	(2) M1
	NP = 24		A1
			(2)
			[9]

Question number	Scheme	Marks	
3	Obtain $(x \pm 10)^2$ and $(y \pm 8)^2$	M1	
(a)	Obtain $(x - 10)^2$ and $(y - 8)^2$	A1	
	Centre is (10, 8). N.B. This may be indicated on diagram only as (10, 8)	A1 (3)	
(b)	See $(x \pm 10)^2 + (y \pm 8)^2 = 25 (= r^2)$ or $(r^2 =)$ "100"+"64"-139	M1	
	r = 5 * (this is a printed answer so need one of the above two reasons)	A1 (2)	
(c)	Use $x = 13$ in either form of equation of circle and solve resulting quadratic to give $y =$	(2) M1	
	e.g $x = 13 \Rightarrow (13 - 10)^2 + (y - 8)^2 = 25 \Rightarrow (y - 8)^2 = 16$ so y=		
	or $13^2 + y^2 - 20 \times 13 - 16y + 139 = 0 \Rightarrow y^2 - 16y + 48 = 0$ so $y = 16y + 48 = 0$		
	y = 4 or 12 (on EPEN mark one correct value as A1A0 and both correct as A1 A1)	A1, A1 (3)	
(d)	Use of $r\theta$ with $r = 5$ and $\theta = 1.855$ (may be implied by 9.275)	M1	
	Perimeter $PTQ = 2r$ + their arc PQ (Finding perimeter of triangle is M0 here)	M1	
	= 19.275 or 19.28 or 19.3	A1 (3)	
		11 marks	
<u>Alternatives</u> (a)	<i>Method 2:</i> From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$	M1 A1, A1	
	Centre is $(-g, -f)$, and so centre is $(10, 8)$.	AI, AI	
OR	<i>Method 3:</i> Use any value of y to give two points (L and M) on circle. x co-ordinate of mid point of LM is "10" and Use any value of x to give two points (P and Q) on circle. y co-ordinate of mid point of PQ is "8" (Centre – chord theorem). (10,8) is M1A1A1	M1 A1 A1 (3)	
(b)	Method 2: Using $\sqrt{g^2 + f^2 - c}$ or $(r^2 =)$ "100"+"64"-139 r = 5 *	M1 A1	
OR	Method 3: Use point on circle with centre to find radius. Eg $\sqrt{(13-10)^2 + (12-8)^2}$ r = 5 *	M1 A1 cao	
(c)	Divide triangle PTQ and use Pythagoras with $r^2 - (13 - "10")^2 = h^2$, then evaluate	(2)	
	" $8 \pm h$ " - (N.B. Could use 3,4,5 Triangle and 8 ± 4).	M1	
Notes	Accuracy as before Mark (a) and (b) together		
(a)	M1 as in scheme and can be <u>implied</u> by $(\pm 10, \pm 8)$. Correct centre (10, 8) implies M1A1A1		
(b)	M1 for a correct method leading to $r =, \text{ or } r^2 = "100" + "64" - 139 \pmod{139 - "100" - "64"}$		
	or for using equation of circle in $(x \pm 10)^2 + (y \pm 8)^2 = k^2$ form to identify $r =$		
	3^{rd} A1 $r = 5$ (NB This is a given answer so should follow $k^2 = 25$ or $r^2 = 100 + 64 - 139$) Special case: if centre is given as (-10, -8) or (10, -8) or (-10, 8) allow M1A1 for $r = 5$ worked correctly as $r^2 = 100 + 64 - 139$		
(d)	Full marks available for calculation using major sector so Use of $r\theta$ with $r = 5$ and $\theta = 4$. leading to perimeter of 32.14 for major sector		

8 (a) Way 1 H = $4x(40 - x)$ {or $H = 4x(x - 40)$ } M 1 3.3 $x = 20, H = 12 \Rightarrow 12 = 4(20)(40 - 20) \Rightarrow A = \frac{3}{100}$ dM1 3.1b $H = \frac{3}{100}x(40 - x)$ or $H = -\frac{3}{100}x(x - 40)$ A1 1.1b (a) H = $12 - \lambda(x - 20)^2$ {or $H = 12 + \lambda(x - 20)^2$ } M1 3.3 Way 2 (a) H = $12 - \lambda(x - 20)^2$ {or $H = 12 + \lambda(x - 20)^2$ } M1 3.1b $H = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow \lambda = \frac{3}{100}$ dM1 3.1b $H = 12 - \frac{3}{100}(x - 20)^2$ A1 1.1b (b) H = $12 - \frac{3}{100}(x - 20)^2$ A1 1.1b (c) H = $12 - \frac{3}{100}(x - 20)^2$ A1 1.1b (c) H = $12 - \frac{3}{100}(x - 20)^2$ A1 1.1b (c) H = $0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ and either $x = 40, H = 0 \Rightarrow 0 = 1600a + 40b$ or $x = 20, H = 12 \Rightarrow 12 = 400a + 20b$ $c = \frac{-b}{2a} = 20$ ($\Rightarrow b = -40a$) (c) (b) (H = $3 \Rightarrow$) $3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0$ M1 3.4 (c) (c) (c) Gives a limitation of the model. Accept e.g. (c) (c) Gives a limitation of the model. Accept e.g. (c) (c) Gives a limitation of the model. Accept e.g. (c) (c) (c) (c) (c) (c) (c) (c)	Question	Scheme	Marks	AOs
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 (a)	$H = Ax(40 - x) $ {or $H = Ax(x - 40)$ }	M1	3.3
(a) $H = 12 - \lambda(x - 20)^{2} \text{ (or } H = 12 + \lambda(x - 20)^{2} \text{)} M1 3.3$ Way 2 $x = 40, H = 0 \Rightarrow 0 = 12 - \lambda(40 - 20)^{2} \Rightarrow \lambda = \frac{3}{100} dM1 3.1b$ $H = 12 - \frac{3}{100}(x - 20)^{2} A1 11.b$ (a) $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx \text{)} G3$ (b) $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx \text{)} G3$ (c) $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx \text{)} G3$ $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx \text{)} G3$ (a) $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx \text{)} G3$ (b) $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx \text{)} G3$ (c) $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx \text{)} G3$ (c) $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx \text{)} G3$ (c) $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx \text{)} G3$ (c) $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx \text{)} G3$ (c) $H = 3 \Rightarrow 3 = \frac{3}{100} (x + 0x) \Rightarrow x^{2} - 40x + 100 = 0 G3$ (c) $H = 3 \Rightarrow 3 = 12 - \frac{3}{100} (x - 20)^{2} \Rightarrow (x - 20)^{2} = 300$ (c) $H = 3 \Rightarrow 3 = 12 - \frac{3}{100} (x - 20)^{2} \Rightarrow (x - 20)^{2} = 300$ (c) $Gives a limitation of the model. Accept e.g.$ (c) $Gives a limitation of the model. Accept e.g.$ (c) $Gives a limitation of the model. Accept e.g.$ (c) $Gives a limitation of the model. Accept e.g.$ (d) $H = 3 = 3 \text{ arcs}(x + 0x) = 3 \text{ arcs}$	Way 1	$x = 20, H = 12 \Longrightarrow 12 = A(20)(40 - 20) \Longrightarrow A = \frac{3}{100}$	dM1	3.1b
(a) $H = 12 - \lambda(x - 20)^2$ {or $H = 12 + \lambda(x - 20)^2$ } M1 3.3 Way 2 $x = 40, H = 0 \Rightarrow 0 = 12 - \lambda(40 - 20)^2 \Rightarrow \lambda = \frac{3}{100}$ M1 3.1b $H = 12 - \frac{3}{100}(x - 20)^2$ A 1 1.1b (a) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) (a) Way 3 $Both x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ A1 1.1b (a) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) M1 3.3 (a) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) M1 3.3 (b) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) M1 3.3 (b) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) M1 3.3 $b = -40a = 0, H = 0 \Rightarrow 0 = 1600a + 40b$ M1 3.3 $b = -40a = 12 = 400a + 20(-40a) \Rightarrow a = -0.03$ M1 3.1b $b = -40a = 3 = 12 - \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0$ M1 3.4 $or \{H = 3 \Rightarrow \} 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300$ M1 3.4 $or \{H = 3 \Rightarrow \} 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300$ M1 1.1b (c) Gives a limitation of the model. Accept e.g. (a) Image: (a) (c) Gives		$H = \frac{3}{100}x(40 - x) \text{ or } H = -\frac{3}{100}x(x - 40)$	A1	1.1b
Way 2 $x = 40, H = 0 \Rightarrow 0 = 12 - \lambda(40 - 20)^2 \Rightarrow \lambda = \frac{3}{100}$ dM1 3.1b $H = 12 - \frac{3}{100}(x - 20)^2$ A1 1.1b (a) $H = ax^2 + bx + c$ (or deduces $H = ax^2 + bx$) (a) Way 3 $Both x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ and either $x = 40, H = 0 \Rightarrow 0 = 1600a + 40b$ M1 3.3 (b) $H = ax^2 + bx + c$ $H = 0 \Rightarrow 0 = 1600a + 40b$ M1 3.3 $b = -40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03$ $so b = -40(-0.03) = 1.2$ M1 3.1b $H = -0.03x^2 + 1.2x$ A1 1.1b (b) $\{H = 3 \Rightarrow\} 3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0$ M1 3.4 $c = g. x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)}$ or $x = 20 \pm \sqrt{300}$ M1 3.4 (c) Gives a limitation of the model. Accept e.g. (3) M1 3.2a (c) Gives a limitation of the model. Accept e.g. B1 3.5b B1 3.5b B1 3.5b (b) the ball needs to be kicked from the ground B1 3.5b B1 3.5b			(3)	
(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	(a)	$H = 12 - \lambda (x - 20)^2$ {or $H = 12 + \lambda (x - 20)^2$ }	M1	3.3
(a) Way 3 $H = ax^{2} + bx + c \text{ (or deduces } H = ax^{2} + bx)$ Both $x = 0, H = 0 \Rightarrow 0 = 0 + 0 + c \Rightarrow c = 0$ and either $x = 40, H = 0 \Rightarrow 0 = 1600a + 40b$ or $x = 20, H = 12 \Rightarrow 12 = 400a + 20b$ or $x = 20, H = 12 \Rightarrow 12 = 400a + 20b$ $b = -40a \Rightarrow 12 = 400a + 20(-40a) \Rightarrow a = -0.03$ so $b = -40(-0.03) = 1.2$ $H = -0.03x^{2} + 1.2x$ A1 1.1b (b) $\{H = 3 \Rightarrow\} 3 = \frac{3}{100}x(40 - x) \Rightarrow x^{2} - 40x + 100 = 0$ or $\{H = 3 \Rightarrow\} 3 = 12 - \frac{3}{100}(x - 20)^{2} \Rightarrow (x - 20)^{2} = 300$ $e.g. x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)} \text{ or } x = 20 \pm \sqrt{300}$ (c) Gives a limitation of the model. Accept e.g. (3) (c) Gives a limitation of the model. Accept e.g. (c) Gives a limitation of the model. Accept e.g. (c) He ball needs to be kicked from the ground (c) He ball needs to be kicked from the ground (c) He tage or you of an irresistance on the ball (c) (c) He tage or you of the ball (c) (c) (c) (c) (c) (c) (c) (c)	Way 2	$x = 40, H = 0 \Longrightarrow 0 = 12 - \lambda (40 - 20)^2 \Longrightarrow \lambda = \frac{3}{100}$	dM1	3.1b
(a) Way 3 (b) (c) (c) (c) (c) (c) (c) (c) (c		$H = 12 - \frac{3}{100}(x - 20)^2$	A1	1.1b
Way 3 In the function of the considered of the constraint of the detection of the constraint of the detection of the detection of the constraint of the detection of the detection of the constraint of the detection			(3)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Both $x=0$, $H=0 \Rightarrow 0=0+0+c \Rightarrow c=0$ and either $x=40$, $H=0 \Rightarrow 0=1600a+40b$ or $x=20$, $H=12 \Rightarrow 12=400a+20b$	M1	3.3
(b) $ \begin{cases} H = 3 \Rightarrow 3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0 \\ M1 \\ 3.4 \\ \hline (b) \\ H = 3 \Rightarrow 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300 \\ \hline (c) \\ H = 3 \Rightarrow 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300 \\ \hline (c) \\ H = 3 \Rightarrow 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300 \\ \hline (c) \\ H = 3 \Rightarrow 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300 \\ \hline (c) \\ (c) \\ (c) \\ Gives a limitation of the model. Accept e.g. \\ (c) \\ (c) \\ Gives a limitation of the model. Accept e.g. \\ (c) \\ (c)$		$b = -40a \Longrightarrow 12 = 400a + 20(-40a) \Longrightarrow a = -0.03$	dM1	3.1b
(b) $ \{H = 3 \Rightarrow\} 3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0 \\ \text{or } \{H = 3 \Rightarrow\} 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300 \\ \text{e.g. } x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)} \text{ or } x = 20 \pm \sqrt{300} \\ \text{dM1} 1.1b \\ \text{(chooses } 20 + \sqrt{300} \Rightarrow\text{) greatest distance = awrt } 37.3 \text{ m} \\ \text{A1} 3.2a \\ \text{(c)} \\ \text{(c)} \\ \text{Gives a limitation of the model. Accept e.g.} \\ \text{o the ground is horizontal} \\ \text{o the ball needs to be kicked from the ground} \\ \text{o the ball needs to be kicked from the ground} \\ \text{o the ball needs to be kicked from the ground} \\ \text{o the ball is modelled as a particle} \\ \text{o the horizontal bar needs to be modelled as a line} \\ \text{o there is no wind or air resistance on the ball} \\ \text{o no obstacles in the trajectory (or path) of the ball} \\ \text{o the trajectory of the ball is a perfect parabola} \\ \end{array}$				
(b) $ \{H = 3 \Rightarrow\} 3 = \frac{3}{100}x(40 - x) \Rightarrow x^2 - 40x + 100 = 0 \\ \text{or } \{H = 3 \Rightarrow\} 3 = 12 - \frac{3}{100}(x - 20)^2 \Rightarrow (x - 20)^2 = 300 \\ \text{e.g. } x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)} \text{ or } x = 20 \pm \sqrt{300} \\ \text{dM1} 1.1b \\ \text{(chooses } 20 + \sqrt{300} \Rightarrow\text{) greatest distance} = awrt 37.3 m \\ \text{A1} 3.2a \\ \text{(3)} \\ \text{(c)} \\ \text{Gives a limitation of the model. Accept e.g.} \\ \text{the ground is horizontal} \\ \text{the ball needs to be kicked from the ground} \\ \text{the ball is modelled as a particle} \\ \text{the horizontal bar needs to be modelled as a line} \\ \text{there is no wind or air resistance on the ball} \\ \text{there is no spin on the ball} \\ \text{on obstacles in the trajectory (or path) of the ball} \\ \text{the trajectory of the ball is a perfect parabola} \\ \text{(1)} \\ \end{array}$		$H = -0.03x^2 + 1.2x$	A1	1.1b
(c) $ \begin{cases} H = 3 \Rightarrow 3 = \frac{12}{100} x(40 - x) \Rightarrow x = 40x + 100 = 0 \\ \text{or } \{H = 3 \Rightarrow \} 3 = 12 - \frac{3}{100} (x - 20)^2 \Rightarrow (x - 20)^2 = 300 \end{cases} $ $ \begin{array}{r} \text{M1} 3.4 \\ \text{M1} 3.4 \\ \hline \text$			(3)	
e.g. $x = \frac{40 \pm \sqrt{1600 - 4(1)(100)}}{2(1)}$ or $x = 20 \pm \sqrt{300}$ dM11.1b $\{chooses \ 20 + \sqrt{300} \Rightarrow\}$ greatest distance = awrt 37.3 mA13.2a(c)Gives a limitation of the model. Accept e.g. • the ground is horizontal • the ball needs to be kicked from the ground • the ball is modelled as a particle • the horizontal bar needs to be modelled as a line • there is no wind or air resistance on the ball • there is no spin on the ball • the trajectory (or path) of the ball • the trajectory of the ball is a perfect parabolaB13.5b(1)	(b)	100	M1	3.4
$\{chooses 20 + \sqrt{300} \Rightarrow\}$ greatest distance = awrt 37.3 mA13.2a(c)Gives a limitation of the model. Accept e.g. • the ground is horizontal • the ball needs to be kicked from the ground • the ball is modelled as a particle • the horizontal bar needs to be modelled as a line • there is no wind or air resistance on the ball • there is no spin on the ball • no obstacles in the trajectory (or path) of the ball • the trajectory of the ball is a perfect parabolaB13.5b(1)			dM1	1.1b
(c)Gives a limitation of the model. Accept e.g. • the ground is horizontal • the ball needs to be kicked from the ground • the ball is modelled as a particle • the horizontal bar needs to be modelled as a line • there is no wind or air resistance on the ball • there is no spin on the ball • the trajectory (or path) of the ball • the trajectory of the ball is a perfect parabola(3)(1)			A1	3.2a
(c)Gives a limitation of the model. Accept e.g. • the ground is horizontal • the ball needs to be kicked from the ground • the ball is modelled as a particle • the horizontal bar needs to be modelled as a line • the horizontal bar needs to be modelled as a lineB13.5b3.5b• there is no wind or air resistance on the ball • there is no spin on the ball • the trajectory (or path) of the ball • the trajectory of the ball is a perfect parabola(1)			(3)	
	(c)	 the ground is horizontal the ball needs to be kicked from the ground the ball is modelled as a particle the horizontal bar needs to be modelled as a line there is no wind or air resistance on the ball there is no spin on the ball no obstacles in the trajectory (or path) of the ball 	B1	3.5b

Question	Scheme	Marks	AOs
7	£y is the total cost of making x bars of soap Bars of soap are sold for £2 each		
(a)	$y = kx + c$ {where k and c are constants}	B1	3.3
	Note: Work for (a) cannot be recovered in (b) or (c)	(1)	
(b)	Either		
Way 1	• $x = 800 \Rightarrow y = 2(800) - 500 \{=1100 \Rightarrow (x, y) = (800, 1100)\}$	M1	3.1b
	• $x = 300 \Rightarrow y = 2(300) + 80 \{= 680 \Rightarrow (x, y) = (300, 680)\}$		
	Applies (800, their 1100) and (300, their 680) to give two equations	JN (1	1 11
	$1100 = 800k + c$ and $680 = 300k + c \implies k, c =$	dM1	1.1b
	Solves correctly to find $k = 0.84$, $c = 428$ and states	4.4.4	
	y = 0.84x + 428 *	A1*	2.1
	Note: the answer $y = 0.84x + 428$ must be stated in (b)	(3)	
(b)	Either		
Way 2	• $x = 800 \Rightarrow y = 2(800) - 500 \{= 1100 \Rightarrow (x, y) = (800, 1100)\}$	M1	3.1b
	• $x = 300 \Rightarrow y = 2(300) + 80 \{= 680 \Rightarrow (x, y) = (300, 680)\}$		
	Complete method for finding both $k =$ and $c =$		
	e.g. $k = \frac{1100 - 680}{800 - 300} \{= 0.84\}$	1) (1	1 11
	e.g. $\kappa = \frac{1}{800 - 300} \{= 0.84\}$	dM1	1.1b
	$(800, 1100) \Longrightarrow 1100 = 800(0.84) + c \implies c = \dots$		
	Solves to find $k = 0.84$, $c = 428$ and states $y = 0.84x + 428$ *	A1*	2.1
	Note: the answer $y = 0.84x + 428$ must be stated in (b)	(3)	
(b)	Either		
Way 3	• $x = 800 \Rightarrow y = 2(800) - 500 \{=1100 \Rightarrow (x, y) = (800, 1100)\}$	M1	3.1b
	• $x = 300 \Rightarrow y = 2(300) + 80 \{= 680 \Rightarrow (x, y) = (300, 680)\}$		
	$\{y = 0.84x + 428 \implies\}$ $x = 800 \implies y = (0.84)(800) + 428 = 1100$	41/1	1 11
	$x = 300 \Longrightarrow y = (0.84)(300) + 428 = 680$	dM1	1.1b
	Hence $y = 0.84x + 428$ *	A1*	2.1
		(3)	
(c)	Allow any of {0.84, in £s} represents		
	• the <i>cost</i> of {making} each extra bar {of soap}		
	• the direct <i>cost</i> of {making} a bar {of soap}		
	• the marginal <i>cost</i> of {making} a bar {of soap}	B1	3.4
	• the <i>cost</i> of {making} a bar {of soap} (Condone this answer) Note: Do not allow		
	• {0.84, in £s} is the profit per bar {of soap}		
	• {0.84, in £s} is the (selling) price per bar {of soap}		
		(1)	
(d)	{Let <i>n</i> be the least number of bars required to make a profit}		
Way 1	$2n = 0.84n + 428 \implies n = \dots$	M1	3.4
	(Condone $2x = 0.84x + 428 \implies x =$)	1	
	Answer of 369 {bars}	A1 (2)	3.2a
(d)	• Trial 1: $n = 368 \implies n = (0.84)(268) + 429 \implies n = 727.12$	(2)	
(u) Way 2	• Trial 1: $n = 368 \Rightarrow y = (0.84)(368) + 428 \Rightarrow y = 737.12$ {revenue = 2(368) = 736 or loss = 1.12}	M1	3.4
···, -		1411	J. T
	• Trial 2: $n = 369 \Rightarrow y = (0.84)(369) + 428 \Rightarrow y = 737.96$		
	{revenue = $2(369) = 738$ or profit = 0.04}	A1	3.2a
	leading to an answer of 369 {bars}	(2)	
			7 marks