14. A curve C has equation y = f(x) where

$$f(x) = -3x^2 + 12x + 8$$

(a) Write f(x) in the form

$$a(x+b)^2+c$$

where a, b and c are constants to be found.

(3)

The curve C has a maximum turning point at M.

(b) Find the coordinates of M.

(2)

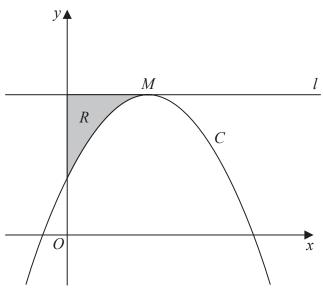


Figure 3

Figure 3 shows a sketch of the curve C.

The line l passes through M and is parallel to the x-axis.

The region *R*, shown shaded in Figure 3, is bounded by *C*, *l* and the *y*-axis.

(c) Using algebraic integration, find the area of R.

(5)

И						
à						
Z	ĺ	2		\geq	S	
Ğ	Š	2	\leq	2	S	
Š		9	₹	7	S	
Š		9	₹	7	8	
		9	₹	7	5	
		9	₹	7	5	
		9	₹	7	5	
		9	₹	7		
		9	₹	7		
		9	₹	7		
		9	₹	7		
		9	₹	7		
		9	₹	7		
		9	₹	7		
		9	₹	7		
		9	₹	7		
		9	₹	7		
		9	₹	7		
			₹			

9. Find the value of the constant k , $0 < k < 9$, such that	
$\int_{k}^{9} \frac{6}{\sqrt{x}} \mathrm{d}x = 20$	
	(4)

3.	Find	
	$\int \frac{3x^4 - 4}{2x^3} \mathrm{d}x$	
	writing your answer in simplest form.	(4)
_		
_		

Answer ALL questions. Write your answers in the spaces provided.

1	ъ.	1
	F1110	٦

$$\int \left(\frac{2}{3}x^3 - 6\sqrt{x} + 1\right) \mathrm{d}x$$

		•	٠.		C
giving you	ır answer	1n	1ts	simplest	torm.

(4)

2

15.

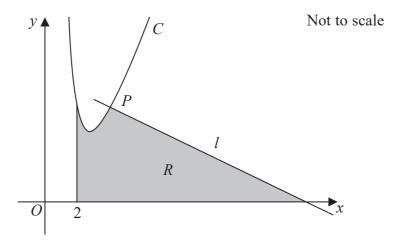


Figure 4

Figure 4 shows a sketch of part of the curve C with equation

$$y = \frac{32}{x^2} + 3x - 8, \qquad x > 0$$

The point P(4, 6) lies on C.

The line l is the normal to C at the point P.

The region R, shown shaded in Figure 4, is bounded by the line l, the curve C, the line with equation x = 2 and the x-axis.

Show that the area of R is 46

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(10)

3. (a) Given that k is a constant, find

$$\int \left(\frac{4}{x^3} + kx\right) \mathrm{d}x$$

simplifying your answer.

(3)

(b) Hence find the value of k such that

$$\int_{0.5}^{2} \left(\frac{4}{x^3} + kx\right) \mathrm{d}x = 8$$

(3)

13.

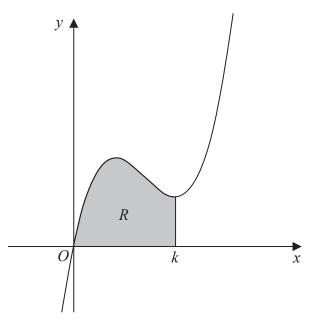


Figure 3

Figure 3 shows a sketch of part of the curve with equation

$$y = 2x^3 - 17x^2 + 40x$$

The curve has a minimum turning point at x = k.

The region R, shown shaded in Figure 3, is bounded by the curve, the x-axis and the line with equation x = k.

Show that the area of *R* is $\frac{256}{3}$

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(7)

- 7. Given that k is a positive constant and $\int_{1}^{k} \left(\frac{5}{2\sqrt{x}} + 3\right) dx = 4$
 - (a) show that $3k + 5\sqrt{k} 12 = 0$

(4)

(b) Hence, using algebra, find any values of k such that

$$\int_{1}^{k} \left(\frac{5}{2\sqrt{x}} + 3 \right) \mathrm{d}x = 4$$

(4)

-			
-			
-			
-			
-			
-			
-		 	
-			

	3 3
10.	$g(x) = 2x^3 + x^2 - 41x - 70$

(a) Use the factor theorem to show that g(x) is divisible by (x-5).

(2)

(b) Hence, showing all your working, write g(x) as a product of three linear factors.

(4)

The finite region R is bounded by the curve with equation y = g(x) and the x-axis, and lies below the x-axis.

(c) Find, using algebraic integration, the exact value of the area of R.

(4)

5	Given	that
J.	OIVUI	mai

Given that
$$f(x) = 2x + 3 + \frac{12}{x^2}, \quad x > 0$$
 show that
$$\int_{1}^{2\sqrt{2}} f(x) dx = 16 + 3\sqrt{2}$$

(5)

(Total for Question 5 is 5 marks)

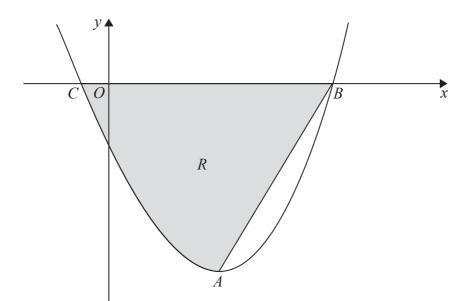


Figure 2

Figure 2 shows a sketch of part of the curve with equation

$$y = 4x^3 + 9x^2 - 30x - 8$$
, $-0.5 \le x \le 2.2$

The curve has a turning point at the point A.

(a) Using calculus, show that the x coordinate of A is 1

(3)

The curve crosses the *x*-axis at the points B(2, 0) and $C\left(-\frac{1}{4}, 0\right)$

The finite region R, shown shaded in Figure 2, is bounded by the curve, the line AB, and the x-axis.

(b) Use integration to find the area of the finite region *R*, giving your answer to 2 decimal places.

(7)

DO NOT WRITE IN THIS AREA

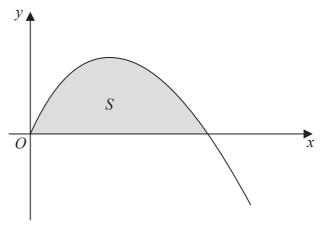


Figure 3

Figure 3 shows a sketch of part of the curve with equation

$$y = 3x - x^{\frac{3}{2}}, \qquad x \geqslant 0$$

The finite region S, bounded by the x-axis and the curve, is shown shaded in Figure 3.

(a) Find

$$\int \left(3x - x^{\frac{3}{2}}\right) \mathrm{d}x \tag{3}$$

(b) Hence find the area of S.

(2)	
1.31	
(\mathbf{v})	

3.	(a)	Express $\frac{x^3 + 4}{2x^2}$ in the form $Ax^p + Bx^q$, where A, B, p and q are constants.	
		$2x^2$	(3)
	(b)	Hence find	
		$\int \frac{x^3 + 4}{2x^2} \mathrm{d}x$	
		simplifying your answer.	(3)

15.

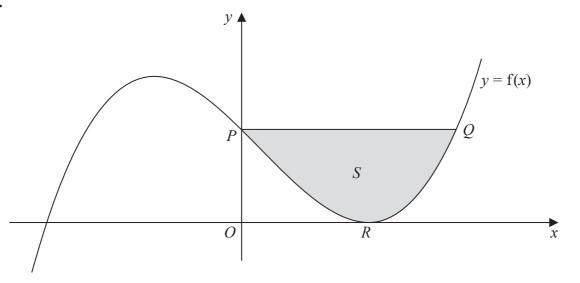


Figure 5

Figure 5 shows a sketch of part of the graph y = f(x), where

$$f(x) = \frac{(x-3)^2(x+4)}{2}, \quad x \in \mathbb{R}$$

The graph cuts the y-axis at the point P and meets the positive x-axis at the point R, as shown in Figure 5.

- (a) (i) State the y coordinate of P.
 - (ii) State the x coordinate of R.

(2)

The line segment PQ is parallel to the x-axis. Point Q lies on y = f(x), x > 0

(b) Use algebra to show that the x coordinate of Q satisfies the equation

$$x^2 - 2x - 15 = 0 ag{3}$$

(c) Use part (b) to find the coordinates of Q.

(3)

The region S, shown shaded in Figure 5, is bounded by the curve y = f(x) and the line segment PQ.

(d) Use calculus to find the exact area of S.

(6)

8. (a) Find $\int (3x^2 + 4x - 15) dx$, simplifying each term.

(3)

Given that b is a constant and

$$\int_{b}^{4} (3x^2 + 4x - 15) \, \mathrm{d}x = 36$$

(b) show that $b^3 + 2b^2 - 15b = 0$

(2)

(c) Hence find the possible values of b.

(3)

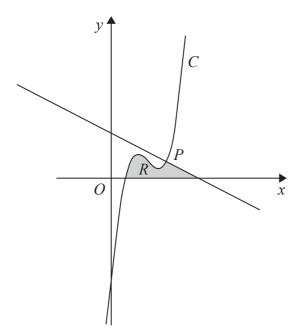


Figure 4

Figure 4 shows a sketch of part of the curve C with equation

$$y = x^3 - 9x^2 + 26x - 18$$

The point P(4, 6) lies on C.

(a) Use calculus to show that the normal to C at the point P has equation

$$2y + x = 16$$
 (5)

The region R, shown shaded in Figure 4, is bounded by the curve C, the x-axis and the normal to C at P.

(b) Show that C cuts the x-axis at (1,0)

(1)

(c) Showing all your working, use calculus to find the exact area of R.

(6)

(Solutions based entirely on graphical or numerical methods are not acceptable.)

7. (i) Find

$$\int \frac{2+4x^3}{x^2} \mathrm{d}x$$

giving each term in its simplest form.

(4)

(ii) Given that k is a constant and

$$\int_{2}^{4} \left(\frac{4}{\sqrt{x}} + k \right) \mathrm{d}x = 30$$

find the exact value of k.

1	5	١
ι	J)

DO NOT WRITE IN THIS AREA

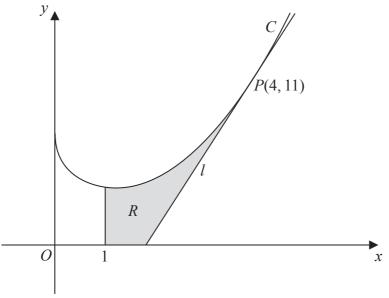


Figure 4

Figure 4 shows a sketch of part of the curve C with equation

$$y = \frac{3}{4}x^2 - 4\sqrt{x} + 7, \quad x > 0$$

The point P lies on C and has coordinates (4, 11).

Line *l* is the tangent to *C* at the point *P*.

(a) Use calculus to show that *l* has equation y = 5x - 9

(5)

The finite region R, shown shaded in Figure 4, is bounded by the curve C, the line x = 1, the x-axis and the line l.

(b) Find, by using calculus, the area of R, giving your answer to 2 decimal places.

(6)

(Solutions based entirely on graphical or numerical methods are not acceptable.)

Leave blank

Eind Scan	$f(x) = 3x^2 + x - \frac{4}{\sqrt{x}} + 6x^{-3}, x > 0$ due simplifying each term	
Find $\int f(x)$	dx, simplifying each term.	(

Leave blank

14.

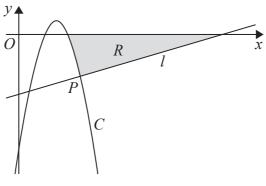


Figure 3

Figure 3 shows a sketch of the curve C with equation $y = -x^2 + 6x - 8$. The normal to C at the point P(5, -3) is the line l, which is also shown in Figure 3.

(a) Find an equation for l, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(5)

The finite region R, shown shaded in Figure 3, is bounded below by the line l and the curve C, and is bounded above by the x-axis.

(b) Find the exact value of the area of R.

(6)

(Solutions based entirely on graphical or numerical methods are not acceptable.)

6. (a) Show that $\frac{x^2-4}{2\sqrt{x}}$ can be written in the form $Ax^p + Bx^q$, where A, B, p and q are constants to be determined.

(3)

(b) Hence find

$$\int \frac{x^2 - 4}{2\sqrt{x}} dx, \quad x > 0$$

giving your answer in its simplest form.

1	1	1
•	4	,

