| Question |  | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: | :---: |
| 1(a) |  | Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ with $t=2: \quad \mathbf{v}=4 \mathbf{i}+2(2 \mathbf{i}-3 \mathbf{j})$ OR integration: $\mathbf{v}=(2 \mathbf{i}-3 \mathbf{j}) t+4 \mathbf{i}, \text { with } t=2$ | M1 | 3.1a |
|  |  | $\mathbf{v}=8 \mathbf{i}-6 \mathbf{j}$ | A1 | 1.1b |
|  |  |  | (2) |  |
| 1(b) |  | Use of $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$ at $t=3$ : $(\mathbf{i}+\mathbf{j})+\left[3 \times 4 \mathbf{i}+\frac{1}{2} \times(2 \mathbf{i}-3 \mathbf{j}) \times 3^{2}\right]$ <br> OR: find $\mathbf{v}$ at $t=3: 4 \mathbf{i}+3(2 \mathbf{i}-3 \mathbf{j})=(10 \mathbf{i}-9 \mathbf{j})$ then use $\mathbf{r}=\frac{1}{2}(\mathbf{u}+\mathbf{v}) t$ $(\mathbf{i}+\mathbf{j})+\left[\frac{1}{2}[4 \mathbf{i}+(10 \mathbf{i}-9 \mathbf{j})] \times 3\right]$ <br> or $\quad \mathbf{r}=\mathbf{v} t-\frac{1}{2} \mathbf{a} t^{2}$ $(\mathbf{i}+\mathbf{j})+\left[3 \times(10 \mathbf{i}-9 \mathbf{j})-\frac{1}{2} \times(2 \mathbf{i}-3 \mathbf{j}) \times 3^{2}\right]$ <br> OR integration: $\mathbf{r}=(\mathbf{i}+\mathbf{j})+\left[(2 \mathbf{i}-3 \mathbf{j}) \frac{1}{2} t^{2}+4 t \mathbf{i}\right]$, with $t=3$ | M1 | 3.1a |
|  |  | $\mathbf{r}=22 \mathbf{i}-12.5 \mathbf{j}$ | A1 | 2.2a |
|  |  |  | (2) |  |
| (4 marks) |  |  |  |  |
| Notes: Accept column vectors throughout |  |  |  |  |
| 1a | M1 | Complete method to find $\mathbf{v}$, using ruvat or integration (M0 if $\mathbf{i}$ and/or $\mathbf{j}$ is missing) |  |  |
|  | A1 | Apply isw if they also find the speed |  |  |
| 1b | M1 | Complete method to find the p.v. but this mark can be scored if they omit ( $\mathbf{i}+\mathbf{j}$ ) i.e. the M1 is for the expression in the square bracket <br> If they integrate, the M1 is earned once the expression in the square bracket is seen with $t=3$ <br> (M0 if $\mathbf{i}$ and/or $\mathbf{j}$ is missing) |  |  |
|  | A1 | cao |  |  |


| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 8(a) | Use of $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}: \quad(7 \mathbf{i}-10 \mathbf{j})=2(2 \mathbf{i}-3 \mathbf{j})+\frac{1}{2} \mathbf{a} 2^{2}$ | M1 | 3.1b |
|  | $\mathbf{a}=(1.5 \mathbf{i}-2 \mathbf{j})$ | A1 | 1.1b |
|  | $\|\mathbf{a}\|=\sqrt{1.5^{2}+(-2)^{2}}$ | M1 | 1.1b |
|  | $=2.5 \mathrm{~m} \mathrm{~s}^{-2} *$ GIVEN ANSWER | A1* | 2.1 |
|  |  | (4) |  |
| (b) | Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t=(2 \mathbf{i}-3 \mathbf{j})+2(1.5 \mathbf{i}-2 \mathbf{j})$ | M1 | 3.1b |
|  | $=(5 \mathbf{i}-7 \mathbf{j})$ | A1 | 1.1b |
|  | $\begin{aligned} & \mathbf{v}=(5 \mathbf{i}-7 \mathbf{j})+t(4 \mathbf{i}+8.8 \mathbf{j})=(5+4 t) \mathbf{i}+(8.8 t-7) \mathbf{j} \text { and } \\ & (5+4 t)=(8.8 t-7) \end{aligned}$ | M1 | 3.1b |
|  | $t=2.5$ (s) | A1 | 1.1b |
|  |  | (4) |  |
| (8 marks) |  |  |  |
| Notes: Allow column vectors throughout |  |  |  |
| (a) <br> No credit for individual component calculations <br> M1: Using a complete method to obtain the acceleration. N.B. Equation, in a only, could be obtained by integrations <br> ALTERNATIVE <br> M1: Use velocity at half-time $(t=1)=$ Average velocity over time period <br> So at $t=1, \mathbf{v}=\frac{1}{2}(7 \mathbf{i}-10 \mathbf{j})$ so $\mathbf{a}=\frac{1}{2}(7 \mathbf{i}-10 \mathbf{j})-(2 \mathbf{i}-3 \mathbf{j})$ <br> N.B. could see $(7 \mathbf{i}-10 \mathbf{j})=(4 \mathbf{i}-6 \mathbf{j})+2 \mathbf{a}$ as first line of working <br> A1: Correct a vector <br> M1: Attempt to find magnitude of their a using form $\sqrt{a^{2}+b^{2}}$ <br> A1*: Correct GIVEN ANSWER obtained correctly |  |  |  |
| $\begin{aligned} & \text { OR: by use of } \mathbf{s}=\mathbf{v} t-\frac{1}{2} \mathbf{a} t^{2} \\ & \text { OR: } \quad \text { by integrating their } \mathbf{a} \text {, with addition of } \mathbf{C}=2 \mathbf{i}-3 \mathbf{j} \text {, and putting } t=2 \\ & \text { A1: correct vector } \\ & \text { M1: Complete method to find equation in } t \text { only } \end{aligned}$ |  |  |  |



| Question |  | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: | :---: |
| 2(a) |  | Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ or integrate to give: $\mathbf{v}=(-2 \mathbf{i}+2 \mathbf{j})+2(4 \mathbf{i}-5 \mathbf{j})$ | M1 | 3.1a |
|  |  | $(6 \mathbf{i}-8 \mathbf{j})\left(\mathrm{m} \mathrm{s}^{-1}\right)$ | A1 | 1.1b |
|  |  |  | (2) |  |
| 2(b) |  | Solve problem through use of $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$ or integration ( M 0 if $\mathbf{u}=\mathbf{0}$ ) <br> $\mathbf{O r}$ any other complete method e.g use $\mathbf{v}=\mathbf{u}+\mathbf{a} T$ and $\mathbf{r}=\frac{(\mathbf{u}+\mathbf{v}) T}{2}$ : | M1 | 3.1a |
|  |  | $-4.5 \mathbf{j}=2 t \mathbf{j}-\frac{1}{2} t^{2} 5 \mathbf{j} \quad(\mathbf{j}$ terms only $)$ | A1 | 1.1b |
|  |  | The first two marks could be implied if they go straight to an algebraic equation. |  |  |
|  |  | Attempt to equate $\mathbf{j}$ components to give equation in $T$ only $\left(-4.5=2 T-\frac{5}{2} T^{2}\right)$ | M1 | 2.1 |
|  |  | $T=1.8$ | A1 | 1.1b |
|  |  |  | (4) |  |
| 2(c) |  | Solve problem by substituting their $T$ value ( M 0 if $T<0$ ) into the i component equation to give an equation in $\lambda$ only: $\lambda=-2 T+\frac{1}{2} T^{2} \times 4$ | M1 | 3.1a |
|  |  | $\lambda=2.9$ or 2.88 or $\frac{72}{25}$ oe | A1 | 1.1b |
|  |  |  | (2) |  |
| Notes: Accept column vectors throughout |  |  | (8 marks) |  |
| 2a | M1 | For any complete method to give a $\mathbf{v}$ expression with correct no. of terms with $t=2$ used, so if integrating, must see the initial velocity as the constant. <br> Allow sign errors. |  |  |
|  | A1 | Cao isw if they go on to find the speed. |  |  |
| 2b | M1 | For any complete method to give a vector expression for $\mathbf{j}$ component of displacement in $t$ (or $T)$ only, using $\mathbf{a}=(4 \mathbf{i}-5 \mathbf{j})$, so if integrating, RHS of equation must have the correct structure. <br> Allow sign errors. |  |  |
|  | A1 | Correct $\mathbf{j}$ vector equation in $t$ or $T$. Ignore $\mathbf{i}$ terms. |  |  |
|  | M1 | Must have earned $1^{\text {st }} \mathrm{M}$ mark. |  |  |


| Question | Scheme | Marks | AOs |
| :---: | :---: | :---: | :---: |
| 8(a) | Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t:(10.5 \mathbf{i}-0.9 \mathbf{j})=0.6 \mathbf{j}+15 \mathbf{a}$ | M1 | 3.1b |
|  | $\mathbf{a}=(0.7 \mathbf{i}-0.1 \mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$ Given answer | A1 | 1.1b |
|  |  | (2) |  |
| (b) | Use of $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$ | M1 | 3.1b |
|  | $\mathbf{r}=0.6 \mathbf{j} t+\frac{1}{2}(0.7 \mathbf{i}-0.1 \mathbf{j}) t^{2}$ | A1 | 1.1b |
|  |  | (2) |  |
| (c) | Equating the $\mathbf{i}$ and $\mathbf{j}$ components of $\mathbf{r}$ | M1 | 3.1b |
|  | $\frac{1}{2} \leftarrow 0.7 t^{2}=0.6 t-\frac{1}{2} \leftarrow 0.1 t^{2}$ | A1ft | 1.1b |
|  | $t=1.5$ | A1 | 1.1b |
|  |  | (3) |  |
| (d) | Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t: \quad \mathbf{v}=0.6 \mathbf{j}+(0.7 \mathbf{i}-0.1 \mathbf{j}) t$ | M1 | 3.1b |
|  | Equating the $\mathbf{i}$ and $\mathbf{j}$ components of $\mathbf{v}$ | M1 | 3.1b |
|  | $t=0.75$ | A1 ft | 1.1b |
|  |  | (3) |  |
| (10 marks) |  |  |  |
| Notes: |  |  |  |
| (a) <br> M1: for use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ <br> A1: for given answer correctly obtained |  |  |  |
| (b) <br> M1: for use of $\mathbf{r}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$ <br> A1: for a correct expression for $\mathbf{r}$ in terms of $t$ |  |  |  |
| (c) <br> M1: for equating the $\mathbf{i}$ and $\mathbf{j}$ components of their $\mathbf{r}$ <br> A1ft: for a correct equation following their $\mathbf{r}$ <br> A1: $\quad$ for $t=1.5$ |  |  |  |
| (d) <br> M1: for use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ for a general $t$ <br> M1: for equating the $\mathbf{i}$ and $\mathbf{j}$ components of their $\mathbf{v}$ <br> A1ft: for $t=0.75$, or a correct follow through answer from an incorrect equation |  |  |  |



| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
|  | $\begin{gathered} (-10 \mathbf{i}+a \mathbf{j})+(b \mathbf{i}-5 \mathbf{j})+(2 a \mathbf{i}+7 \mathbf{j})=3(3 \mathbf{i}+4 \mathbf{j}) \\ a-5+7=12 \Rightarrow a=10 \\ -10+b+2 a=9 \Rightarrow b=-1 \end{gathered}$ | M1 <br> M1 A1 <br> M1 A1 (5) |
| (b) | $\begin{aligned} 20 \mathbf{i}+20 \mathbf{j} & =\mathbf{u}+4(3 \mathbf{i}+4 \mathbf{j}) \\ \mathbf{u} & =(8 \mathbf{i}+4 \mathbf{j}) \\ u & =\sqrt{8^{2}+4^{2}}=\sqrt{80}=8.9 \text { (or better) } \end{aligned}$ | $$ |
|  | Notes | 9 |
| 2(a) | First M1 for applying $\mathbf{F}=m \mathbf{a}$; need all terms but allow slips and allow $m$ instead of 3 Second M1 (independent but M0 if they have $\mathbf{0}$ instead of ma) for equating coefficients of j <br> First A1 for $a=10$ <br> Third M1 (independent but M0 if they have $\mathbf{0}$ instead of ma) for equating coefficients of $\mathbf{i}$ Second A1 for $b=-1$ |  |
| (b) | First M1 for applying $\mathbf{v}=\mathbf{u}+t \mathbf{a}$; need all terms and must be vector $\mathbf{u}$ First A1 for $8 \mathbf{i}+4 \mathbf{j}$ <br> Second M1 (independent) for finding magnitude of their vector $\mathbf{u}$ Second A1 for $\sqrt{ } 80$ or 8.9 or better |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4.(a) | $\mathbf{p}=(-5 \mathbf{i}+9 \mathbf{j})+t(\mathbf{i}-2 \mathbf{j})$ | M1 A1 (2) |
| (b) | $\begin{aligned} & 2=9-2 t \\ & t=3.5 \\ & \mathbf{p}=(-5 \mathbf{i}+9 \mathbf{j})+3.5(\mathbf{i}-2 \mathbf{j})=(-1.5 \mathbf{i}+2 \mathbf{j}) \end{aligned}$ | M1 <br> A1 <br> M1 A1 <br> (4) |
| (c) | $\begin{gathered} \frac{2 b-1}{5-2 b}=\frac{1}{-2} \\ b=-1.5 \end{gathered}$ | M1 A1 <br> DM1 A1 <br> (4) |
|  | Notes |  |
| 4.(a) | M1 for clear attempt at $\mathbf{p}=(-5 \mathbf{i}+9 \mathbf{j})+t(\mathbf{i}-2 \mathbf{j})$ (allow slips but must be ${ }^{‘}+{ }^{\prime}$ ) A1 if correct |  |
| (b) | First M1 for equating the $\mathbf{j}$ component of their $\mathbf{p}$ to 2 <br> First A1 for $t=3.5$ <br> Second M1 (independent) for substituting their $t$ value into their $\mathbf{p}$ <br> Second A1 for $(-1.5 \mathbf{i}+2 \mathbf{j})$ |  |
| (c) | First M1 for $\frac{2 b-1}{5-2 b}= \pm \frac{1}{2}$ or $\frac{2 b-1}{5-2 b}= \pm \frac{2}{1}$ (must be in $b$ only but allow slips) <br> First A1 for a correct equation in $b$ only <br> Second M1 (dependent on first M1) for solving for $b$ <br> Second A1 for $b=-1.5$ |  |


| Question | Scheme | Marks | Notes |
| :--- | :--- | :--- | :--- |
| 6. (a) | $\mathbf{v}=(10 \mathbf{i}+4 \mathbf{j})+6(-2 \mathbf{i}+3 \mathbf{j})$ | M1 | Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ with $t=6$ |
|  | $=-2 \mathbf{i}+22 \mathbf{j}$ | A1 |  |
|  | $\tan \theta= \pm \frac{22}{2}$ or $\tan \theta= \pm \frac{2}{22}$ | M1 | Correct use of trig to find a relevant angle for <br> their $\mathbf{v}$ |
|  | $\theta=85^{\circ}$ or $5^{\circ}$ | A1 | Seen or implied |
|  | bearing is $355^{\circ}$ | A1 |  |
| (b) | $\mathbf{v}=(10 \mathbf{i}+4 \mathbf{j})+t(-2 \mathbf{i}+3 \mathbf{j})$ | M1 | Use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ |
|  | $(=(10-2 t) \mathbf{i}+(4+3 t) \mathbf{j}))$ | DM1 | Correct unsimplified |
|  | $(10-2 t)=(4+3 t)$ | A1 |  |
|  | $t=1.2$ | $(4)$ |  |
|  |  | $[9]$ |  |
|  |  |  |  |
|  |  |  |  |



| Alt (c) | $M(A): 15 g A Y+6 g \times 2=1.5 \times 21 g$ | M1 | Requires all terms present and of the correct structure. No additional terms |
| :---: | :---: | :---: | :---: |
|  |  | A2 | Correct unsimplified equation -1 each error |
|  | $A Y=1.3 \mathrm{~m}$ | A1 |  |
|  |  | (4) |  |
| Alt (c) | $M(C): 6 g \times 0.5=15 g(1.5-A Y)$ | M1 |  |
|  |  | A2 | -1 each error |
|  | $A Y=1.3 \mathrm{~m}$ | A1 |  |
|  |  | (4) |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| 7. | $(2 \mathbf{i}+9 \mathbf{j})-(-3 \mathbf{i}-3 \mathbf{j})$ | M1 | Use of $\mathbf{v}-\mathbf{u}(=\mathbf{a} t)$ seen or implied |
|  | $=(5 \mathbf{i}+12 \mathbf{j})$ | A1 |  |
|  | $k^{2}\left(5^{2}+12^{2}\right)=2.6^{2} \quad(k=1 / t)$ | M1 | Use magnitude $=2.6=k\|\mathbf{a}\| \quad$ (linking 2.6 \& 13) |
|  |  |  |  |
|  | $c=5 \times 0.2=1$ | A1 |  |
|  | $d=12 \times 0.2=2.4$ | A1 |  |
|  |  | (5) |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |


| Question Number | Scheme | Marks | Notes |
| :---: | :---: | :---: | :---: |
| 5 (a) | $\text { Speed }=\sqrt{3^{2}+(-2)^{2}} \text { or } \sqrt{3^{2}+2^{2}}=\sqrt{13} \mathrm{~m} \mathrm{~s}^{-1}$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1(2) } \end{aligned}$ | Use Pythagoras <br> Accept 3.6 or better Ignore their diagram if it does not support their working |
| (b) | $\tan \theta=\frac{2}{3}, \quad \theta=33.7 \quad \text { OR } \quad \tan \theta=\frac{3}{2}, \theta=56.3$ <br> OR find another useful angle <br> Bearing $=124$ | M1 <br> A1 <br> A1 (3) | Find a relevant angle <br> Their angle correct (seen or implied) <br> Correct bearing. Accept $124^{\circ}$ or awrt $124 / 124^{\circ}$ Accept N 124 E or S 56 E |
| (c) | $\begin{aligned} & \mathbf{r}_{B}=10 \mathbf{j}+t(3 \mathbf{i}-2 \mathbf{j}) \\ & \mathbf{r}_{G}=4 \mathbf{i}-2 \mathbf{j}+t\left(\frac{5}{3} \mathbf{i}+2 \mathbf{j}\right) \end{aligned}$ | M1 <br> A1 <br> A1 | Find the position vector of $B$ or $G$ at time $t$ Correct for $B$ <br> Correct for $G$ |
|  | $3 t=4+\frac{5}{3} t \quad \text { OR } \quad 10-2 t=-2+2 t$ <br> (i) $t=3 \mathrm{~s}$ <br> (ii) $\mathbf{r}=10 \mathbf{j}+3(3 \mathbf{i}-2 \mathbf{j})=(9 \mathbf{i}+4 \mathbf{j}) \mathrm{m}$ | DM1 <br> A1 | Compare coefficients of $\mathbf{i}$ or of $\mathbf{j}$ to form an equation in $t$. <br> Correct unambiguous conclusion. |
|  | $\text { OR } \mathbf{r}=4 \mathbf{i}-2 \mathbf{j}+3\left(\frac{5}{3} \mathbf{i}+2 \mathbf{j}\right)=(9 \mathbf{i}+4 \mathbf{j}) \mathrm{m}$ | A1 (6) | Final answer. Accept with no units. Do not ignore subsequent working. |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 6 a | Resultant force $=(2 \mathbf{i}+3 \mathbf{j})+(4 \mathbf{i}-5 \mathbf{j})=6 \mathbf{i}-2 \mathbf{j}(\mathrm{~N})$ | M1 |
|  | Use of $\mathbf{F}=m \mathbf{a}: 6 \mathbf{i}-2 \mathbf{j}=2 \mathbf{a}, \quad \mathbf{a}=3 \mathbf{i}-\mathbf{j}$ | M1 |
|  | Magnitude: $\quad\|a\|=\sqrt{3^{2}+1^{2}}=\sqrt{10}(=3.2$ or better $)\left(\mathrm{ms}^{-2}\right)$ | M1A1 |
|  |  | (4) |
|  |  |  |
| 6b | $(10 \mathbf{i}+2 \mathbf{j})=(-u \mathbf{i}+u \mathbf{j})+T(3 \mathbf{i}-\mathbf{j})$ | M1 |
|  | $10=-u+3 T$ and $2=u-T$ | DM1A1ft |
|  | $T=6$ | A1 |
|  | (i) $\quad u=8$ | A1 |
|  | (ii) | (5) |
|  |  |  |
|  |  |  |
|  |  | [9] |
|  | Notes for question 6 |  |
| 6a | First M1 for adding forces - must collect i's and j $\mathbf{j}$ 's |  |
|  | Second M1 for use of $\mathbf{F}=m \mathbf{a}$ or $F=m a$ |  |
|  | Third M1 for finding a magnitude |  |
|  | A1 for $\sqrt{10}(=3.2$ or better $)$ |  |
|  |  |  |
| 6b | First M1 for use of $\mathbf{v}=\mathbf{u}+\mathbf{a} t$ with their $\mathbf{a}$ (M0 if clearly using $\mathbf{F}$ instead of a) |  |
|  | Second DM1, dependent on previous M, for equating cpts of $\mathbf{i}$ and $\mathbf{j}$ |  |
|  | First A1ft for two correct equations following their a |  |
|  | Second A1 for $T=6$ |  |
|  | Third A1 for $u=8$ |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
|  | Accept column vectors throughout |  |
| 2 a | Use of $\mathbf{F}=m \mathbf{a}: 2 \mathbf{i}+3 \mathbf{j}=0.5 \mathbf{a}$ | M1 |
|  | $\mathbf{a}=4 \mathbf{i}+6 \mathbf{j}\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ | A1 |
|  |  | (2) |
|  |  |  |
| 2b | Use of $\mathbf{v}=\mathbf{u}+3 \mathbf{a}$ with their $\mathbf{a}$ | M1 |
|  | $=16 \mathbf{i}+18 \mathbf{j}$ | A1 |
|  | Use of Pythagoras: speed $=\sqrt{16^{2}+18^{2}}$ | M1 |
|  | $=\sqrt{580}$ or $24\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ or better | A1 |
|  |  | (4) |
|  |  |  |
| 2c | In component form: $\mathbf{v}=4 \mathbf{i}+t(4 \mathbf{i}+6 \mathbf{j})$ | M1 |
|  | $4+4 T=2 \times 6 T$ | M1 |
|  | $T=\frac{1}{2}$ | A1 |
|  |  | (3) |
|  |  | [9] |
|  |  |  |
|  | Notes |  |
| 2 a | M1 for use for $\mathbf{F}=m \mathbf{a}$ : |  |
|  | A1 for $4 \mathbf{i}+6 \mathbf{j}\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ isw if magnitude found. |  |
|  |  |  |
| 2b | First M1 for $\mathbf{v}=\mathbf{4 i}+3(\mathbf{4 i}+\mathbf{6} \mathbf{j})$ with their $\mathbf{a}($ but M0 if they use $2 \mathbf{i}+3 \mathbf{j}$ (the force) instead of a) |  |
|  | First A1 for $16 \mathbf{i}+18 \mathbf{j}$ seen or implied |  |
|  | Second M1 for finding magnitude of their $\mathbf{v}$ |  |
|  | Second A1 for 24 or better (24.0831...) or $\sqrt{ } 580$ |  |
|  |  |  |
| 2 c | First M1 for $\mathbf{v}=\mathbf{4 i}+\boldsymbol{t}(\mathbf{4 i}+\mathbf{6} \mathbf{j})$ with their $\mathbf{a}$ (but M0 if they use $2 \mathbf{i}+3 \mathbf{j}$ (the force) instead of a) |  |
|  | Second independent M1 for a correct method to give an equation in $T$ (t) only using their $\mathbf{v}$ |  |
|  | A1 for $(T)=1 / 2$ |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

