Que	uestion Scheme		Marks	AOs	
1	(a)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with $t = 2$: $\mathbf{v} = 4\mathbf{i} + 2(2\mathbf{i} - 3\mathbf{j})$ OR integration: $\mathbf{v} = (2\mathbf{i} - 3\mathbf{j})t + 4\mathbf{i}$, with $t = 2$	M1	3.1a	
		$\mathbf{v} = 8\mathbf{i} - 6\mathbf{j}$	A1	1.1b	
1(b)		Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ at $t = 3$: $(\mathbf{i} + \mathbf{j}) + \left[3 \times 4\mathbf{i} + \frac{1}{2} \times (2\mathbf{i} - 3\mathbf{j}) \times 3^2 \right]$ OR: find \mathbf{v} at $t = 3$: $4\mathbf{i} + 3(2\mathbf{i} - 3\mathbf{j}) = (10\mathbf{i} - 9\mathbf{j})$ then use $\mathbf{r} = \frac{1}{2}(\mathbf{u} + \mathbf{v})t$ $(\mathbf{i} + \mathbf{j}) + \left[\frac{1}{2} [4\mathbf{i} + (10\mathbf{i} - 9\mathbf{j})] \times 3 \right]$ or $\mathbf{r} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$ $(\mathbf{i} + \mathbf{j}) + \left[3 \times (10\mathbf{i} - 9\mathbf{j}) - \frac{1}{2} \times (2\mathbf{i} - 3\mathbf{j}) \times 3^2 \right]$ OR integration: $\mathbf{r} = (\mathbf{i} + \mathbf{j}) + \left[(2\mathbf{i} - 3\mathbf{j}) \frac{1}{2}t^2 + 4t\mathbf{i} \right]$, with $t = 3$		3.1a	
	r = 22i - 12.5j		A1	2.2a	
			(2)		
			(4 n	narks)	
Note	es: A	ccept column vectors throughout			
1 a	M1	Complete method to find v , using ruva <i>t</i> or integration (M0 if i and/or j is missing)			
	A1	Apply isw if they also find the speed			
1b	Complete method to find the p.v. but this mark can be scored if they omit $(i + j)$ i.e. the M1 is for the expression in the square bracket If they integrate, the M1 is earned once the expression in the square bracket is seen with $t = 3$ (M0 if i and/or j is missing)				
	A1	cao			

Question	Scheme	Marks	AOs
8(a)	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$: $(7\mathbf{i} - 10\mathbf{j}) = 2(2\mathbf{i} - 3\mathbf{j}) + \frac{1}{2}\mathbf{a}2^2$	M1	3.1b
	a = (1.5i - 2j)	A1	1.1b
	$ \mathbf{a} = \sqrt{1.5^2 + (-2)^2}$	M1	1.1b
	= 2.5 m s ⁻² * GIVEN ANSWER	A1*	2.1
		(4)	
(b)	Use of $v = u + at = (2i - 3j) + 2(1.5i - 2j)$	M1	3.1b
	=(5i - 7j)	A1	1.1b
	$\mathbf{v} = (5\mathbf{i} - 7\mathbf{j}) + t(4\mathbf{i} + 8.8\mathbf{j}) = (5 + 4t)\mathbf{i} + (8.8t - 7)\mathbf{j}$ and (5+4t) = (8.8t - 7)	M1	3.1b
	t = 2.5 (s)	A1	1.1b
		(4)	

(8 marks)

Notes: Allow column vectors throughout

(a)

No credit for individual component calculations

M1: Using a complete method to obtain the acceleration. N.B. Equation, in **a** only, could be obtained by two integrations

ALTERNATIVE

M1: Use velocity at half-time (t = 1) = Average velocity over time period

So at
$$t = 1$$
, $\mathbf{v} = \frac{1}{2}(7\mathbf{i} - 10\mathbf{j})$ so $\mathbf{a} = \frac{1}{2}(7\mathbf{i} - 10\mathbf{j}) - (2\mathbf{i} - 3\mathbf{j})$

N.B. could see $(7\mathbf{i}-10\mathbf{j}) = (4\mathbf{i}-6\mathbf{j}) + 2\mathbf{a}$ as first line of working

A1: Correct a vector

M1: Attempt to find magnitude of their **a** using form $\sqrt{a^2 + b^2}$

A1*: Correct GIVEN ANSWER obtained correctly

(b)

M1: Using a complete method to obtain the velocity at A e.g. by use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with t = 2 and

 $\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}$ and their \mathbf{a}

OR: by use of $\mathbf{s} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$

OR: by integrating their **a**, with addition of C = 2i - 3j, and putting t = 2

A1: correct vector

M1: Complete method to find equation in *t* only

Qu	estion	Scheme	Marks	AO			
$2(\mathbf{a}) \qquad (\mathbf{v}=)\mathbf{C}+(2\mathbf{i}-3\mathbf{j})t$		$(\mathbf{v} =)\mathbf{C} + (2\mathbf{i} - 3\mathbf{j})t$	M1	3.1a			
		$(\mathbf{v}=)(-\mathbf{i}+4\mathbf{j})+(2\mathbf{i}-3\mathbf{j})t$	A1	1.1b			
		$\frac{4-3T}{-1+2T} = \frac{-4}{3}$ oe	M1	3.1a			
		T = 8	A1	1.1b			
			(4)				
(b)		$(\mathbf{s} =) \mathbf{C}t + (2\mathbf{i} - 3\mathbf{j})\frac{1}{2}t^2 (+\mathbf{D})$	M1	3.1a			
		$(\mathbf{s}=)(-\mathbf{i}+4\mathbf{j})t+\frac{1}{2}(2\mathbf{i}-3\mathbf{j})t^2 \ (+\mathbf{D})$	A1	1.1b			
		$AB = \sqrt{12^2 + 8^2}$					
		N.B. Beware you may see $4(2i - 3j)$ which leads to $\sqrt{(8^2 + 12^2)}$ this is M0A0M0A0.	M1	3.1a			
		$=4\sqrt{13}(=14.422051)$ (m)		1.1b			
			(4)				
			(8)				
N	larks	Notes					
		Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$					
	N/1	OR integration to give an expression of the form $C + (2i-3j)t$.	, where C i	is a			
2a	IVI I	non-zero constant <u>vector</u>					
		Mu ii u and a are reversed Condone use of $\mathbf{a} = (2\mathbf{i} + 3\mathbf{i})$ for this M mark					
	Λ 1	Any correct ungimplified expression scen or implied					
	AI						
Correct use of ratios, <u>using a velocity vector</u>		Correct use of ratios, <u>using a velocity vector</u> (must be using $\frac{-4}{3}$)) to give eq	uation			
M1 $\frac{\text{in } T \text{ only}}{\text{M0 if they equate } 4-3T = -4 \text{ and/or } -4 \text{ or } -4 o$		in <i>T</i> only M0 if they equate $4-3T = -4$ and/or $-1+2T = 3$ and therefore M0 divide to produce their equation	0 if they the	n			
A1 Correct only							
N.B. (i) Can score the second M1A1 if they get $T = 8$, using a calculator to so simultaneous equations, but if answer is wrong, and no equation in T on M0 (ii) Can score M1A1 M1A1 if they get $T = 8$, using trial and error, but it get $T = 8$, can only score max M1A1M0A0			or to solve t n <i>T</i> only, s , but if they	two second y don't			

Que	estion	Scheme	Marks	AOs		
2	e(a)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ or integrate to give: $\mathbf{v} = (-2\mathbf{i} + 2\mathbf{j}) + 2(4\mathbf{i} - 5\mathbf{j})$	M1	3.1a		
$(6i - 8j) (m s^{-1})$			A1	1.1b		
2	2(b) Solve problem through use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ or integration					
		$(M0 \text{ if } \mathbf{u} = 0)$	M1	3.1a		
	Or any other complete method e.g use $\mathbf{v} = \mathbf{u} + \mathbf{a}T$ and $\mathbf{r} = \frac{(\mathbf{u} + \mathbf{v})T}{2}$:					
		$-4.5\mathbf{j} = 2t\mathbf{j} - \frac{1}{2}t^2 5\mathbf{j} \qquad (\mathbf{j} \text{ terms only})$	A1	1.1b		
		The first two marks could be implied if they go straight to an algebraic equation.				
		Attempt to equate j components to give equation in T only	N/1	2.1		
	$(-4.5 = 2T - \frac{5}{2}T^2)$					
	T = 1.8			1.1b		
2	2(c)	Solve problem by substituting <u>their</u> T value (M0 if $T < 0$) into the i component equation to give an equation in λ only:				
		$\lambda = -2T + \frac{1}{2}T^2 \times 4$	M1	3.1a		
		72				
		$\lambda = 2.9 \text{ or } 2.88 \text{ or } \frac{1}{25} \text{ oe}$	A1	1.1b		
			(2)			
Note	Notes: Accept column vectors throughout					
2a	M1	For any complete method to give a v expression with correct no. of terms with $t = 2$ used, so if integrating, must see the initial velocity as the constant. Allow sign errors.				
	A1	Cao isw if they go on to find the speed.				
2b	M1 For any complete method to give a vector expression for j component of displacement in <i>t</i> (or <i>T</i>) only, using $\mathbf{a} = (4\mathbf{i} - 5\mathbf{j})$, so if integrating, RHS of equation must have the correct structure. Allow sign errors.					
	A1	Correct j vector equation in t or T . Ignore i terms.				
	M1	Must have earned 1 st M mark.				

Ques	lestion Scheme		Marks	AOs		
8(a)		Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$: $(10.5\mathbf{i} - 0.9\mathbf{j}) = 0.6\mathbf{j} + 15\mathbf{a}$		3.1b		
		$\mathbf{a} = (0.7\mathbf{i} - 0.1\mathbf{j}) \text{ m s}^{-2}$ Given answer	A1	1.1b		
			(2)			
(b)	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	3.1b		
		$\mathbf{r} = 0.6\mathbf{j} t + \frac{1}{2} (0.7\mathbf{i} - 0.1\mathbf{j}) t^2$	A1	1.1b		
			(2)			
(0	:)	Equating the i and j components of r	M1	3.1b		
		$\frac{1}{2} \leftarrow 0.7 \ t^2 = 0.6 \ t - \frac{1}{2} \leftarrow 0.1 \ t^2$	Alft	1.1b		
		t = 1.5	A1	1.1b		
			(3)			
(d	l)	Use of $v = u + at$: $v = 0.6j + (0.7i - 0.1j) t$	M1	3.1b		
		Equating the \mathbf{i} and \mathbf{j} components of \mathbf{v}	M1	3.1b		
		t = 0.75		1.1b		
			(3)			
			(1	0 marks)		
Notes	5					
(a) M1:	for us	$e of \mathbf{v} = \mathbf{u} + \mathbf{a}t$				
A1:	for giv	ven answer correctly obtained				
(b)						
M1:	for use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$					
A1:	A1: for a correct expression for r in terms of <i>t</i>					
(c)						
M1:	for equating the i and j components of their \mathbf{r}					
AIIT: A1:	t: for a correct equation following their r for $t = 1.5$					
(d)						
M1:	for us	e of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ for a general t				
M1:	for equating the i and j components of their \mathbf{v}					
A1ft:	for $t = 0.75$, or a correct follow through answer from an incorrect equation					

Question Number	Scheme			
6a	Horizontal distance: $x = 7t$	B1		
	Vertical distance : $y = 7\sqrt{3} t - \frac{1}{2} gt^2$	M1A1		
	Sub for <i>t</i> : $y = 7\sqrt{3} \times \frac{x}{7} - \frac{g}{2} \times \frac{x^2}{49} = \sqrt{3}x - \frac{g}{98}x^2$ *Given Answer*			
6b	Differentiate to find gradient: $\frac{dy}{dx} = \sqrt{3} - \frac{2gx}{98}$			
	Sub $x = 20$ & use tan: $\tan^{-1}\left(\sqrt{3} - \frac{40g}{98}\right)$	DM 1		
	$= 66.2^{\circ}$ or 66° below the horizontal oe	A1 (4)		
	Or : in the direction of (parallel to is A0) $(7\mathbf{i} - 16\mathbf{j})$ or $(7\mathbf{i} - 15.9\mathbf{j})$			
6balt	$x = 20 = 7t \Longrightarrow t = \frac{20}{7}$	M1		
	Vertical cpt = $7\sqrt{3} - \frac{20}{7}g$			
	$= \tan^{-1} \left(\frac{7\sqrt{3} \frac{20g}{7}}{7} \right) = -66.2^{-0}; 66^{\circ} \text{ below the horizontal oe}$	DM 1A1 (4)		
6с	Use the x/y ratio to form an equation in T: $7T = 14\sqrt{3}T - gT^2$ Solve for T: $T = \frac{14\sqrt{3} - 7}{g} (=1.8)$ (1.76)	M1A1 DM 1A1 (4)		
	$=2 \sqrt{3} \frac{g}{2} (2)^2$	M1A1		
6c alt	$T = \frac{2}{7} = 1.76$	DM 1A1 (4)		
		[13]		
	Notes \mathbf{N}			
ба	B1 for $x = /t$ seen or implied M1 for vertical motion equation $y = 7\sqrt{3t} - 1/2 gt^2$ need correct no. of terms, but condone sign errors First A1 for a correct equation Second DM 1, dependent on first M1, for substituting for t Second A1 for given answer .			

Question Number	Scheme	Marks		
2(a)	(-10i+aj)+(bi-5j)+(2ai+7j) = 3(3i+4j)	M1		
	$a-5+7=12 \Rightarrow a=10$			
	$-10 + b + 2a = 9 \implies b = -1$			
(b)	20i + 20j = u + 4(3i + 4j) u = (8i + 4j)	M1 A1		
	$u = \sqrt{8^2 + 4^2} = \sqrt{80} = 8.9$ (or better)	M1 A1 (4)		
		9		
	Notes			
2(a)	First M1 for applying $\mathbf{F} = m\mathbf{a}$; need all terms but allow slips and allow <i>m</i> instead of 3 Second M1 (independent but M0 if they have 0 instead of <i>m</i> a) for equating <i>coefficients</i> of j First A1 for $a = 10$ Third M1 (independent but M0 if they have 0 instead of <i>m</i> a) for equating <i>coefficients</i> of i Second A1 for $b = -1$			
(b)	First M1 for applying $\mathbf{v} = \mathbf{u} + t\mathbf{a}$; need all terms and must be vector \mathbf{u} First A1 for $8\mathbf{i} + 4\mathbf{j}$ Second M1 (independent) for finding magnitude of their vector \mathbf{u} Second A1 for $\sqrt{80}$ or 8.9 or better			

Question Number	Scheme	Marks
4.(a)	$\mathbf{p} = (-5\mathbf{i} + 9\mathbf{j}) + t(\mathbf{i} - 2\mathbf{j})$	M1 A1 (2)
(b)	2 = 9 - 2t t = 3.5 $\mathbf{p} = (-5\mathbf{i} + 9\mathbf{j}) + 3.5(\mathbf{i} - 2\mathbf{j}) = (-1.5\mathbf{i} + 2\mathbf{j})$	M1 A1 M1 A1 (4)
(c)	$\frac{2b-1}{5-2b} = \frac{1}{-2}$ b = -1.5	M1 A1 DM1 A1 (4) 10
	Notes	
4.(a)	M1 for clear attempt at $\mathbf{p} = (-5\mathbf{i} + 9\mathbf{j}) + t(\mathbf{i} - 2\mathbf{j})$ (allow slips but must be '+ ') A1 if correct	
(b)	First M1 for equating the j <i>component</i> of their p to 2 First A1 for $t = 3.5$ Second M1 (independent) for substituting their <i>t</i> value into their p Second A1 for $(-1.5\mathbf{i} + 2\mathbf{j})$	
(c)	First M1 for $\frac{2b-1}{5-2b} = \pm \frac{1}{2}$ or $\frac{2b-1}{5-2b} = \pm \frac{2}{1}$ (must be in <i>b</i> only but allow slips) First A1 for a correct equation in <i>b</i> only Second M1 (dependent on first M1) for solving for <i>b</i> Second A1 for <i>b</i> = -1.5	

Question	Scheme	Marks	Notes
6. (a)	v = (10i + 4j) + 6(-2i + 3j)	M1	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with $t = 6$
	$=-2\mathbf{i}+22\mathbf{j}$	A1	
	$ \tan \theta = \pm \frac{22}{2} \text{ or } \tan \theta = \pm \frac{2}{22} $	M1	Correct use of trig to find a relevant angle for their v
	$\theta = 85^{\circ} \text{ or } 5^{\circ}$	A1	Seen or implied
	bearing is 355°	A1	
		(5)	
(b)	$\mathbf{v} = (10\mathbf{i} + 4\mathbf{j}) + t(-2\mathbf{i} + 3\mathbf{j})$	M1	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$
	$\left(=(10-2t)\mathbf{i}+(4+3t)\mathbf{j})\right)$	A1	Correct unsimplified
	(10-2t) = (4+3t)	DM1	Equate coefficients to give equation in <i>t</i> only
	<i>t</i> = 1.2	A1	
		(4)	
		[9]	

Question Number	Scheme	Marks	Notes
5. (a)	$(2\mathbf{i}-3\mathbf{j})+(p\mathbf{i}+q\mathbf{j})=(p+2)\mathbf{i}+(q-3)\mathbf{j}$	M1	Resultant force = $\mathbf{F}_1 + \mathbf{F}_2$ in the form $a\mathbf{i} + b\mathbf{j}$
	$\frac{p+2}{q-3} = \frac{1}{2} \text{or} \begin{array}{c} p+2=n\\ q-3=2n \end{array} \text{ for } n \neq 1$	M1	Use parallel vector to form a scalar equation in p and q .
		A1	Correct equation (accept any equivalent form)
	4 + 2p = -3 + q	DM1	Dependent on no errors seen in comparing the vectors. Rearrange to obtain given answer. At least one stage of working between the fraction and the given answer
	2p-q+7=0	A1	Given Answer
		(5)	
5.(b)	$q = 11 \Longrightarrow p = 2$	B1	
	$\mathbf{R} = 4\mathbf{i} + 8\mathbf{j}$	M1	$(2+p)\mathbf{i}+8\mathbf{j}$ for their p
	$4\mathbf{i} + 8\mathbf{j} = 2\mathbf{a} (\mathbf{a} = 2\mathbf{i} + 4\mathbf{j})$	M1	Use of $\mathbf{F} = m\mathbf{a}$
	$\left \mathbf{a}\right = \sqrt{2^2 + 4^2}$	DM1	Correct method for $ \mathbf{a} $ Dependent on the preceding M1
	$=\sqrt{20} = 4.5 \text{ or } 4.47 \text{ or better } (\text{m s}^{-2})$	A1	2√5
		(5)	
	Alternative for the last two M marks:		
	$\left \mathbf{F}\right = \sqrt{16 + 64} \left(=\sqrt{80}\right) \qquad \qquad \mathbf{M1}$		Correct method for $ \mathbf{F} $
	$\sqrt{80} = 2 \times \mathbf{a} $ DM1		Use of $ \mathbf{F} = m \mathbf{a} $ Dependent on the preceding M1
		[10]	

Alt (c)	$M(A): 15gAY + 6g \times 2 = 1.5 \times 21g$	M1	Requires all terms present and of the correct structure. No additional terms
		A2	Correct unsimplified equation -1 each error
	AY = 1.3 m	A1	
		(4)	
Alt (c)	$M(C): \ 6g \times 0.5 = 15g(1.5 - AY)$	M1	
		A2	-1 each error
	AY = 1.3 m	A1	
		(4)	
7.	(2i+9j)-(-3i-3j)	M1	Use of $\mathbf{v} - \mathbf{u} (= \mathbf{a}t)$ seen or implied
	$=(5\mathbf{i}+12\mathbf{j})$	A1	
	$k^{2}(5^{2}+12^{2}) = 2.6^{2}$ (k = 1/t)	M1	Use magnitude = $2.6 = k \mathbf{a} $ (linking 2.6 & 13)
	$a = 5 \times 0.2 = 1$	A 1	
	$d = 12 \times 0.2 = 1$		
	u - 12X0.2 - 2.7	(5)	

Question Number	Scheme	Marks	Notes
5 (a)	Speed = $\sqrt{3^2 + (-2)^2}$ or $\sqrt{3^2 + 2^2} = \sqrt{13} \text{ m s}^{-1}$	M1 A1(2)	Use Pythagoras Accept 3.6 or better
(b)	θ		Ignore their diagram if it does not support their working
	$\tan \theta = \frac{2}{2}$, $\theta = 33.7$ OR $\tan \theta = \frac{3}{2}$, $\theta = 56.3$	M1	Find a relevant angle
	3 2 OR find another useful angle	A1	Their angle correct (seen or implied)
	Bearing = 124	A1 (3)	Correct bearing. Accept 124° or awrt 124/124° Accept N 124 E or S 56 E
(c)	$\mathbf{r}_{B} = 10\mathbf{j} + t\left(3\mathbf{i} - 2\mathbf{j}\right)$	M1 A1	Find the position vector of B or G at time t Correct for B
	$\mathbf{r}_G = 4\mathbf{i} - 2\mathbf{j} + t\left(\frac{5}{3}\mathbf{i} + 2\mathbf{j}\right)$	A1	Correct for G
	$3t = 4 + \frac{5}{3}t$ OR $10 - 2t = -2 + 2t$	DM1	Compare coefficients of \mathbf{i} or of \mathbf{j} to form an equation in t .
	(i) $t = 3 \text{ s}$ (ii) $\mathbf{r} = 10\mathbf{j} + 3(3\mathbf{i} - 2\mathbf{j}) = (9\mathbf{i} + 4\mathbf{j}) \text{ m}$	A1	Correct unambiguous conclusion.
	OR $\mathbf{r} = 4\mathbf{i} - 2\mathbf{j} + 3\left(\frac{5}{3}\mathbf{i} + 2\mathbf{j}\right) = (9\mathbf{i} + 4\mathbf{j})\mathbf{m}$	A1 (6)	Final answer. Accept with no units. Do not ignore subsequent working.
		[11]	

Question Number	Scheme	Marks	6
6a	Resultant force = $(2\mathbf{i}+3\mathbf{j})+(4\mathbf{i}-5\mathbf{j})=6\mathbf{i}-2\mathbf{j}$ (N)	M1	
	Use of $\mathbf{F} = m\mathbf{a}$: $6\mathbf{i} - 2\mathbf{j} = 2\mathbf{a}$, $\mathbf{a} = 3\mathbf{i} - \mathbf{j}$	M1	
	Magnitude: $ a = \sqrt{3^2 + 1^2} = \sqrt{10} (= 3.2 \text{ or better}) (\text{ms}^{-2})$	M1A1	
_			(4)
6b	$(10\mathbf{i} + 2\mathbf{j}) = (-u\mathbf{i} + u\mathbf{j}) + T(3\mathbf{i} - \mathbf{j})$	M1	
	10 = -u + 3T and 2 = u - T	DM1A1	ft
	T = 6	A1	
	(i) $u = 8$	A1	
	(ii)		(5)
			[9]
	Notes for question 6		
<u>6a</u>	First M1 for adding forces – must collect i's and j's		
	Second M1 for use of $\mathbf{F} = m\mathbf{a}$ or $F = ma$		
	Third MI for finding a magnitude		
	A1 for $\sqrt{10} (= 3.2 \text{ or better})$		
6b	First M1 for use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ with their \mathbf{a} (M0 if clearly using \mathbf{F} instead of \mathbf{a})		
	Second DM 1, dependent on previous M, for equating cpts of i and j		
	First A1 ft for two correct equations following their a		
	Second A1 for $T = 6$		
	Third A1 for $u = 8$		
<u> </u>			

Question Number	Scheme	Marks	
_	Accept column vectors throughout		
2a	Use of $\mathbf{F} = m\mathbf{a}$: $2\mathbf{i} + 3\mathbf{j} = 0.5\mathbf{a}$	M1	
	$\mathbf{a} = 4\mathbf{i} + 6\mathbf{j} (\mathrm{m \ s}^{-2})$	A1	
_		(2)	
2b	Use of $\mathbf{v} = \mathbf{u} + 3\mathbf{a}$ with their \mathbf{a}	M1	
	$=16\mathbf{i}+18\mathbf{j}$	A1	
	Use of Pythagoras: speed = $\sqrt{16^2 + 18^2}$	M1	
_	$= \sqrt{580}$ or 24 (m s ⁻¹) or better	A1	
		(4)	
2c	In component form: $\mathbf{v} = 4\mathbf{i} + t(4\mathbf{i} + 6\mathbf{j})$	M1	
	$4 + 4T = 2 \times 6T$	M1	
	$T = \frac{1}{2}$	A1	
	2		
		(3)	
		[9]	
	Notes		
29	$M1 \text{ for use for } \mathbf{F} = m\mathbf{a}.$		
24	1 for $A_{i} \downarrow G_{i} (m s^{-2})$ is wift magnitude found		
	AT for 41+0 (in s) iswitt magnitude found.		
	First M1 for $\mathbf{v} = A\mathbf{i} + 3(A\mathbf{i} + 6\mathbf{i})$ with their \mathbf{a} (but M0 if they use $2\mathbf{i} + 2\mathbf{i}$		
2b	(the force) instead of a)		
	First A1 for 16i +18i seen or implied		
	Second M1 for finding magnitude of their v		
	Second A1 for 24 or better (24.0831) or $\sqrt{580}$		
20	First M1 for $\mathbf{v} = 4\mathbf{i} + t(4\mathbf{i} + 6\mathbf{j})$ with their \mathbf{a} (but M0 if they use $2\mathbf{i} + 3\mathbf{j}$)		
20	(the force) instead of a)		
	Second independent M1 for a correct method to give an equation in T		
	(t) only using their \mathbf{v}		
	A1 for $(1) = \frac{1}{2}$		