

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Core Mathematics 2 (6664_01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code UA038455 All the material in this publication is copyright © Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1 ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number		Scheme			Marks
	<u>x</u> 1 1.25	1.5	1.75	2	
	y 1.414 1.601	1.803	2.016	2.236	
1.(a)	{At $x = 1.25$,} $y = 1.601$ (only)			the table and can f their working in	B1 cao
					[1]
	$\frac{1}{2} \times 0.25; \times \frac{1.414 + 2.236}{1.414 + 2.236}$	5 + 2 (their 1.601 +	- 1.803 + 2.	.016)}	B1; <u>M1 A1ft</u>
	B1; for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent.	<u>Structure of</u>	as show	r the correct expression n following through te's y value found in	
	M1 requires the correct structure for the y values. It needs to contain first y value plus last y value and the second bracket to be multiplied by 2 and to be the summation of the remaining y values in the table with no additional values. If the only mistake is a copying error or is to omit one value from $2()$ bracket this may be regarded as a slip and the M mark can be allowed (nb: an extra repeated term, however, forfeits the M mark). M0 if any values used are x values instead of y values.				
(b)	A1ft: for the correct underlined expression as shown following through candidate's y value found in part (a). Bracketing mistakes: e.g. $\left(\frac{1}{2} \times \frac{1}{4}\right) (1.414 + 2.236) + 2 (\text{their } 1.601 + 1.803 + 2.016) (= 11.29625)$				
	$\left(\frac{1}{2} \times \frac{1}{4}\right)$ 1.414 + 2.236 + 2(their 1.601 + Both score B1 M1 A0 unless the final answ correctly (then full marks could be given).				
	Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{8}(1.414+1.601) + \frac{1}{8}(1.601+1.803) + \frac{1}{8}(1.803+2.016) + \frac{1}{8}(2.016+2.236)\right]$ B1 for $\frac{1}{2}$ (aef), M1 for correct structure, 1st A1ft for correct expression, ft their 1.601				
	$\frac{8}{\left\{=\frac{1}{8}(14.49)\right\}=1.81125}$	1.81 or awa	rt 1.81		A1
	Correct answer o				431
	If required accuracy is not seen in (a), f			ed in (b) (e.g. uses 1.6)	
					[4]
					Total 5

Question Number	Scheme		
	If there is no labelling, ma	rk (a) and (b) in that order	
	$f(x) = 2x^3 - $	$7x^2 + 4x + 4$	
	$f(2) = 2(2)^{3} - 7(2)^{2} + 4(2) + 4$	Attempts f(2) or f(-2)	M1
2. (a)	= 0, and so $(x - 2)$ is a factor.	f(2) = 0 with no sign or substitution errors $(2(2)^3 - 7(2)^2 + 4(2) + 4 = 0$ is sufficient) and for conclusion. Stating "hence factor" or "it is a factor" or a "tick" or "QED" or "no	
	Note: Long division scores no marks in part (a). The <u>factor theorem</u> is required.		
	$f(x) = \{(x-2)\}(2x^2 - 3x - 2)$	M1: Attempts long division by $(x - 2)$ or other method using $(x - 2)$, to obtain $(2x^2 \pm ax \pm b)$, $a \neq 0$, even with a remainder. Working need not be seen as this could be done "by inspection." A1: $(2x^2 - 3x - 2)$	[2] M1 A1
(b)	$= (x-2)(x-2)(2x+1) \operatorname{or} (x-2)^{2}(2x+1)$ or equivalent e.g. $= 2(x-2)(x-2)(x+\frac{1}{2}) \operatorname{or} 2(x-2)^{2}(x+\frac{1}{2})$ Note $= (x-2)(\frac{1}{2}x-1)(4x+2)$ would los	dM1: Factorises a 3 term quadratic. (see rule for factorising a quadratic in the General Principles for Core Maths Marking). This is dependent on the previous method mark being awarded but there must have been no remainder. Allow an attempt to solve the quadratic to determine the factors. A1: cao – needs all three factors on one line. Ignore following work (such as a solution to a quadratic equation.)	d M1 A1
	Note $= (x - 2)(\frac{1}{2}x - 1)(4x + 2)$ would lose the last mark as it is not fully factorised For correct answers only award full marks in (b)		
-			[4]
		1	Total 6

www.yesterdaysmathsexam.com

Question Number	Schem	ne	Marks
3. (a)	$(2-3x)^6 = 64 + \dots$	64 seen as the only constant term in their expansion.	B1
	$\left\{ (2-3x)^6 \right\} = (2)^6 + \underline{^6C_1}(2)^5 (-1)^{-1} + \underline{^6C_1}(2)^{-1} $	$3\underline{x}$) + $(\underline{^{6}C_{2}}(2)^{4}(-3\underline{x})^{2} +$	<u>M1</u>
	M1: $({}^{6}C_{1} \times \times x)$ or $({}^{6}C_{2} \times \times x^{2})$. For <u>either</u> the <i>x</i> term <u>or</u> the <i>x</i> ² term. Requires <u>correct</u>		
	binomial coefficient in any form with the cor coefficient (perhaps including powers of 2 and/o	rect power of x, but the other part of the or -3) may be wrong or missing. The terms	
	$\frac{\text{can be "listed" rather than added}}{{}^{6}\text{C}_{1}2^{5}-3x+} {}^{6}\text{C}_{2}2^{4}-3x^{2}+\dots \text{ Scores M0 u}}$		
	$C_1 2 - 3x + C_2 2 - 3x + \dots$ Scores Mol	A1: Either $-576x$ or $2160x^2$	
		A1: Either $-5/6x$ or $2160x$ (Allow $+ -576x$ here)	
	$= 64 - 576x + 2160x^2 + \dots$	A1: Both $-576x$ and $2160x^2$	A1A1
		(Do not allow $+ -576x$ here)	
		(Do not anow + - 570x here)	[4]
(a) Way 2	$(2-3x)^6 = 64 + \dots$	64 seen as the only constant term in their expansion.	B1
		M1: $({}^{6}C_{1} \times \times x)$ or $({}^{6}C_{2} \times \times x^{2})$. For	
	$\left(1 - \frac{3}{2}x\right)^{6} = 1 + \frac{{}^{6}C_{1}}{\left(\frac{-3}{2}x\right)} + \frac{{}^{6}C_{2}}{\left(\frac{-3}{2}x\right)^{2}} + \dots$	<u>either</u> the <i>x</i> term <u>or</u> the x^2 term. Requires <u>correct</u> binomial coefficient in any form <u>with the correct power of <i>x</i></u> , but the other part of the coefficient (perhaps including powers of 2 and/or -3) may be wrong or missing. The terms can be "listed" rather than added. Ignore any extra terms.	<u>M1</u>
	$= 64 - 576x + 2160x^2 + \dots$	A1: Either $-576x$ or $2160x^{2}$ (Allow $+ -576x$ here) A1: Both $-576x$ and $2160x^{2}$ (Do not allow $+ -576x$ here)	- A1A1
(b)	Candidate writes down $\left(1+\frac{x}{2}\right) \times \left(\text{their part}\right)$	(a) answer, at least up to the term in x).	
	(Condone missing brackets)		
	$\left(1+\frac{x}{2}\right)(64-576x+)$ or $\left(1+\frac{x}{2}\right)(64-576x+2160x^2+)$ or		M1
	$\left(1+\frac{x}{2}\right)64 - \left(1+\frac{x}{2}\right)576x \text{ or } \left(1+\frac{x}{2}\right)64 - \left(1+\frac{x}{2}\right)576x + \left(1+\frac{x}{2}\right)2160x^2$		
	or $64 + 32x, -576x - 288x^2$, $2160x^2 + 1080x^3$ are fine.		
		A1: At least 2 terms correct as shown. (Allow $+ - 544x$ here)	
	$= 64 - 544x + 1872x^2 + \dots$	A1: $64 - 544x + 1872x^2$ The terms can be "listed" rather than added. Ignore any extra terms.	A1A1
			[3]
	SC. If a candidate expands in descending new	vers of r, only the M marks are available	Total 7
	SC: If a candidate expands in descending pow e.g. $\{(2-3x)^6\} = (-3x)^6 + {}^6C_1(2)$		
	$= (2 5x) f = (5x) + \underline{C_1}(2)$		

Question	Scheme		
Number 4.		$n \rightarrow n^{+1}$	Marks
		M1: $x^n \rightarrow x^{n+1}$ A1: At least one of either $\frac{x^4}{6(4)}$ or $\frac{x^{-1}}{(3)(-1)}$.	
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx \right\} = \frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$	A1: $\frac{x^4}{6(4)} + \frac{x^{-1}}{(3)(-1)}$ or equivalent.	M1A1A1
		e.g. $\frac{\frac{x^4}{6}}{4} + \frac{\frac{x^{-1}}{3}}{-1}$ (they will lose the final mark	
		if they cannot deal with this correctly)	
	Note that some candidates may change $\int y^3 = 1$		
	$\int \frac{x^3}{6} + \frac{1}{3x^2} dx = \int 3x^5 + 6dx \text{ in which case al}$	low the M1 if $x^n \rightarrow x^{n+1}$ for their changed	
	function and allow the	M1 for limits if scored	
	$\left\{\int_{1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx\right\} = \left(\frac{\left(\sqrt{3}\right)}{24}\right)$	$ + \frac{\left(\sqrt{3}\right)^{-1}}{-1(3)} - \left(\frac{\left(1\right)^4}{24} + \frac{\left(1\right)^{-1}}{-1(3)}\right) $	dM1
	2^{nd} dM1: For using limits of $\sqrt{3}$ and 1 on an int way round. The 2^{nd} M1 is depended		
		$\frac{2}{3} - \frac{1}{9}\sqrt{3} \text{ or } a = \frac{2}{3} \text{ and } b = -\frac{1}{9}.$ Allow equivalent fractions for <i>a</i> and/or <i>b</i> and 0.6 recurring and/or 0.1 recurring but do not allow $\frac{6-\sqrt{3}}{9}$	Alcso
	This final mark is cao and cso – there	e must have been no previous errors	
	Common Errors (I	Usually 3 out of 5)	Total 5
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx \right\} = \int \left(\frac{x^3}{6} + 3x\right) dx$		
	$\left\{\int_{-1}^{\sqrt{3}} \left(\frac{x^{3}}{6} + \frac{1}{3x^{2}}\right) dx\right\} = \left(\frac{\left(\sqrt{3}\right)^{4}}{24} + \frac{1}{3x^{2}}\right) dx$	$\frac{3\left(\sqrt{3}\right)^{-1}}{-1} - \left(\frac{(1)^4}{24} + \frac{3(1)^{-1}}{-1}\right) dM1$	
	$=\left(\frac{9}{24}-\frac{3}{\sqrt{3}}\right)-\left(\frac{1}{24}\right)$	$\left(+\frac{3}{-1}\right) = \frac{10}{3} - \sqrt{3} \mathrm{A0}$	
	$\left\{ \int \left(\frac{x^3}{6} + \frac{1}{3x^2}\right) dx \right\} = \int \left(\frac{x^3}{6} + \left(3x\right)\right) dx$	$\int_{-2}^{-2} dx = \frac{x^4}{6(4)} + \frac{(3x)^{-1}}{(-1)}$ M1A1A0	
	$\left\{ \int_{-1}^{\sqrt{3}} \left(\frac{x^3}{6} + \frac{1}{3x^2} \right) dx \right\} = \left(\frac{\left(\sqrt{3}\right)^4}{24} + \frac{1}{3x^2} \right) dx = \frac{1}{3x^2} \left(\frac{1}{3x^2} + \frac{1}{3x^2} \right) dx$	$\frac{\left(3\sqrt{3}\right)^{-1}}{-1} - \left(\frac{(1)^4}{24} + \frac{(3\times 1)^{-1}}{-1}\right) dM1$	
	$=\left(\frac{9}{24}-\frac{1}{3\sqrt{3}}\right)-\left(\frac{1}{24}\right)$	$\left(\frac{1}{4} - \frac{1}{3}\right) = \frac{2}{3} - \frac{\sqrt{3}}{9} A0$	
	Note this is the correct answer	r but follows incorrect work.	

Question Number		Scheme	Marks
5.(a)	Area <i>BDE</i> $=\frac{1}{2}(5)^2(1.4)$	M1: Use of the correct formula or method for the area of the sector	M1A1
	$=17.5 (cm^2)$	A1: 17.5 oe	
a)			[2]
(b)	Parts (b) and (c) can be marked together		
		or $\cos DBC = \frac{5^2 + 7.5^2 - 6.1^2}{2 \times 5 \times 7.5}$ (or equivalent)	M1
		nent involving the angle <i>DBC</i>	
	Angle <i>DBC</i> = 0.943201	awrt 0.943	A1
	Note that work for (b) may	be seen on the diagram or in part (c)	[2
(c)	Note that candidates may work in d	egrees in (c) (Angle $DBC = 54.04deg rees$)	[2
	Area CBD	$=\frac{1}{2}5(7.5)\sin(0.943)$	
		Area $CBD = \frac{1}{2}5(7.5)\sin(\text{their } 0.943)$ or awrt	
	Angle $EBA = \pi - 1.4 - "0.943"$	15.2. (Note area of $CBD = 15.177$)	M1
	(Maybe seen on the diagram)	A correct method for the area of triangle <i>CBD</i> which can be implied by awrt 15.2	1011
	$\pi - 1.4$ – "their 0.943"		
	A value for angle <i>EBA</i> of awrt 0.8 (from 0.7985926536 or 0.7983916536) or value for angle		M1
	<i>EBA</i> of $(1.74159 \text{their angle } DBC)$ would imply this mark.		
	$AB = 5\cos(\pi - 1.4 - "0.943")$		
	or $AE = 5\sin(\pi - 1.4 - "0.943")$		
		$AB = 5\cos(\pi - 1.4 - \text{their } 0.943)$	
		$AB = 5\cos(0.79859) = 3.488577938$	
		Allow M1 for $AB = awrt 3.49$	
		Or	
		$AE = 5\sin(\pi - 1.4 - \text{their } 0.943)$	
		$AE = 5\sin(0.79859) = 3.581874365688$	M1
		Allow M1 for $AE = awrt 3.58$	M1
		It must be clear that $\pi - 1.4 - "0.943$ " is	
		being used for angle EBA. Note that some candidates use the sin rule here but it must be used correctly – do not allow mixing of degrees and	
	Area $EAB = \frac{1}{2}5\cos(\pi - 1.4 + 1.4)$	$-"0.943") \times 5 \sin(\pi - 1.4 - "0.943")$	
	This is depend	ent on the previous M1	an et
	and there must be no other er	rors in finding the area of triangle EAB	dM1
		or area $EAB = awrt 6.2$	
-	Area $ABCDE = 15.1$	17+ 17.5 + 6.24 = 38.92	
		awrt 38.9	A1cs
		1	[5
		btuse angle (2.198) and could lead to the correct	Tota

Question Number	Sc	heme	Marks	
6(a)	$S = \frac{20}{1-160}$	M1: Use of a correct S_{∞} formula	2 61 4 1	
	$S_{\infty} = \frac{20}{1 - \frac{7}{8}}; = 160$	A1: 160	M1A1	
	Accept correct	answer only (160)		
		Γ	[2]	
(b)	$20(1 (7)^{12})$	M1: Use of a correct S_n formula with $n = 12$		
	$S_{12} = \frac{20\left(1 - \left(\frac{7}{8}\right)^{12}\right)}{1 - \frac{7}{2}}; = 127.77324$	(condone missing brackets around 7/8)	M1A1	
	$1-\frac{1}{8}$	A1: awrt 127.8		
	T & I in (b) requires all 12 terms to be calc	ulated correctly for M1 and A1 for awrt 127.8		
			[2]	
(c)		Applies S_N (GP only) with $a = 20$, $r = \frac{7}{8}$ and		
	$160 - \frac{20(1 - (\frac{7}{8})^N)}{1 - \frac{7}{2}} < 0.5$	"uses" 0.5 and their S_{∞} at any point in their	M1	
	$1 - \frac{1}{8}$	working. (condone missing brackets around $7/8$)(Allow =, <, >, \ge , \le) but see note below.		
	$(7)^N$ $(7)^N$ (0.5)	Attempt to isolate $+160\left(\frac{7}{8}\right)^N$ or $+\left(\frac{7}{8}\right)^N$ oe		
	$160\left(\frac{7}{8}\right)^{N} < (0.5) \operatorname{or} \left(\frac{7}{8}\right)^{N} < \left(\frac{0.5}{160}\right)$	(Allow =, <, >, \ge , \le) but see note below.	dM1	
	(0) (0) (100)	Dependent on the previous M1		
		Uses the power law of logarithms or takes logs		
		base 0.875 correctly to obtain an equation or an inequality of the form		
	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$			
		$N \log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{\text{their } S_{\infty}}\right)$	M1	
		or		
		$N > \log_{0.875} \left(\frac{0.5}{\text{their } S_{\infty}} \right)$		
		(Allow =, <, >, \ge , \le) but see note below.		
	$N > \frac{\log(\frac{0.5}{160})}{\log(\frac{7}{8})} = 43.19823 \Rightarrow N = 44$	$N = 44$ (Allow $N \ge 44$ but not $N > 44$	A1 cso	
		e in a candidate's working loses the final mark. tion of the inequality is reversed in the final line		
		full marks for using =, as long as no incorrect		
	working seen.			
			[4] Total 8	
	Trial & Im	provement Method in (c):	IUIALO	
	1 st M1: Attempts 160 – S_N or S_N with at least one value for $N > 40$			
	2^{nd} M1: Attempts $160 - S_N$ or S_N with $N = 43$ or $N = 44$			
	3^{rd} M1: For evidence of examining $160 - S_N$ or S_N for both $N = 43$ and $N = 44$ with both			
		correct to 2 DP		
	Eg: $160 - S_{43} = awrt \ 0.51 \ and \ 160 - S_{44} = awrt \ 0.45$			
	or $S_{43} = awrt159.49$ and $S_{44} = awrt159.55$			
	A1: $N = 44 \operatorname{cso}$ Answer of $N = 44$ only with no working scores no marks			
	Answer of N = 44 onl	y with no working scores no marks		

Question Number	Sch	neme	Marks
	(i) $9\sin(\theta + 60^{\circ})$	$=4; 0 \le \theta < 360^{\circ}$	
7.	(ii) $2\tan x - 3\sin x$	$x = 0; \ -\pi \le x < \pi$	
(i)	$\sin(\theta + 60^{\circ}) = \frac{4}{9}$, so $(\theta + 60^{\circ}) = 26.3877$	Sight of $\sin^{-1}\left(\frac{4}{9}\right)$ or awrt 26.4° or 0.461°	M1
	$(\alpha = 26.3877)$	Can also be implied for $\theta = awrt - 33.6$ (i.e. 26.4 - 60)	1011
	So, $\theta + 60^{\circ} = \{153.6122, 386.3877\}$	$\theta + 60^{\circ} =$ either "180 – their α " or "360° + their α " and not for θ = either "180 – their α " or "360° + their α ". This can be implied by later working. The candidate's α could also be in radians but do not allow mixing of degrees and radians.	M1
	and $\theta = \{93.6122, 326.3877\}$	A1: At least one of awrt 93.6° or awrt 326.4°	A1 A1
		A1: Both awrt 93.6° and awrt 326.4°	
		nust come from correct work	
	Ignore extra solutions outside the range.		
	In an otherwise fully correct solution deduct the final A1for any extra solutions in range		[4]
(ii)	$2\left(\frac{\sin x}{\cos x}\right) - 3\sin x = 0$	Applies $\tan x = \frac{\sin x}{\cos x}$	M1
	Note: Applies $\tan x = \frac{\sin x}{\cos x}$ can be implied	d by $2\tan x - 3\sin x = 0 \Longrightarrow \tan x (2 - 3\cos x)$	
		$\ln x \cos x = 0$	
	$\sin x(2-x)$	$3\cos x) = 0$	-
	$\cos x = \frac{2}{3}$	$\cos x = \frac{2}{3}$	A1
	$x = \operatorname{awrt}\{0.84, -0.84\}$	A1: One of either awrt 0.84 or awrt -0.84 A1ft: You can apply ft for $x = \pm \alpha$, where $\alpha = \cos^{-1}k$ and $-1 \le k \le 1$	A1A1ft
	In this part of the solution, if there are a	ny extra answers in range in an otherwise	
		withhold the A1ft.	
	$\{\sin x = 0 \Rightarrow\} x = 0 \text{ and } -\pi$	Both $x = 0$ and $-\pi$ or awrt -3.14 from sin $x = 0$ In this part of the solution, ignore extra	
	Note solutions are: $x = \{-3, 1\}$	solutions in range. 415 0.8410 0. 0.8410 }	
	Note solutions are: $x = \{-3.1415, -0.8410, 0, 0.8410\}$ Ignore extra solutions outside the range		
	For all answers in degrees in (ii) M1A1A0A1ftB0 is possible		
	Allow the use of θ in place of x in (ii)		
			[5]
			Total 9

Question Number	Scheme			Marks
8.	Graph of $y = 3^x$ and solving	$3^{2x} - 9(3^x) + 18$	8 = 0	
(a)	At least two of the three criteria correc (See notes below.)			B1
			e criteria correct. notes below.)	B1
	y (0, 1)	curve for $x \ge 0$ positive y-axis. Criteria numb curve for $x < 0$ axis or have any Criteria numb	er 1: Correct shape of and at least touches the er 2: Correct shape of . Must not touch the x- y turning points. er 3: (0, 1) stated or in	
	0 x	a table or 1 marked on the <i>y</i> -axis. Allow (1, 0) rather than (0, 1) if marked in the "correct" place on the <i>y</i> - axis.		[2]
(b)	$(\mathbf{a}\mathbf{x})^2$ $\mathbf{a}(\mathbf{a}\mathbf{x})$ is a			[2]
	$(3^{x})^{2} - 9(3^{x}) + 18 = 0$ or $y = 3^{x} \Longrightarrow y^{2} - 9y + 18 = 0$	-	tic of the correct form in ere "y"= 3^x or even in x	M1
	$\frac{(y-6)(y-3) = 0 \text{ or } (3^x-6)(3^x-3) = 0}{\{(y-6)(y-3) = 0 \text{ or } (3^x-6)(3^x-3) = 0\}}$			
	$y = 3^{x} \implies y^{2} - 9y + 18 = 0$ { (y-6)(y-3) = 0 or (3 ^x - 6)(3 ^x - 3) = 0 } y = 6, y = 3 or 3 ^x = 6, 3 ^x = 3	Both $y = 6$ and	d $y = 3$.	A1
		A valid method for solving $3^x = k$ where $k > 0, k \neq 1, k \neq 3$		
	or $x = \frac{\log 6}{\log 3}$ or $x = \log_3 6$	to give either	$x \log 3 = \log k$ or $x = \frac{\log k}{\log 3}$ or $x = \log_3 k$.	d M1
	<i>x</i> = 1.63092	awrt 1.63		Alcso
	Provided the first M1A1 is scored, the second	1 M1A1 can be in	mplied by awrt 1.63	
	<i>x</i> = 1	x = 1 stated as a solution from <i>any</i> working.		B1
				[5]
				Total 7

Question Number	Scheme		
INUITOCI	Mark (a) and (b) together		
9. (a)	$OQ^{2} = (6\sqrt{5})^{2} + 4^{2} \text{ or } OQ = \sqrt{(6\sqrt{5})^{2} + 4^{2}} \{=14\}$ Uses the addition form of Pythagoras on $6\sqrt{5}$ and 4. Condone missing brackets on $(6\sqrt{5})^{2}$ (Working or 14 may be seen on the diagram)	M1	
	$y_{Q} = \sqrt{14^{2} - 11^{2}}$ $y_{Q} = \sqrt{(\text{their } OQ)^{2} - 11^{2}}$ Must include $\sqrt{\text{and is dependent on}}$ the first M1 and requires OQ > 11	d M1	
	$=\sqrt{75} \text{ or } 5\sqrt{3} \qquad \qquad \sqrt{75} \text{ or } 5\sqrt{3}$	A1cso	
		[3]	
(b)	$(x-11)^{2} + (y-5\sqrt{3})^{2} = 16$ $M1: (x \pm 11)^{2} + (y \pm \text{their } k)^{2} = 4^{2}$ Equation must be of this form and must use x and y not other letters. k could be their last answer to part (a). Allow their $k \neq 0$ or just the letter k. A1: $(x-11)^{2} + (y-5\sqrt{3})^{2} = 16$ or $(x-11)^{2} + (y-5\sqrt{3})^{2} = 4^{2}$ NB $5\sqrt{3}$ must come from correct work in (a) and allow awrt 8.66	- M1A1	
	Allow in expanded form for the final A1		
	e.g. $x^2 - 22x + 121 + y^2 - 10\sqrt{3}y + 75 = 16$		
		[2]	
	Watch out for:	Total 5	
	(a) $OQ = \sqrt{\left(6\sqrt{5}\right)^2 + 4^2} = \sqrt{46} \text{ M1}$		
	$y_Q = \sqrt{46 - 11^2} \text{ M0 (OQ < 11)}$		
	$y_Q = \sqrt{75} \text{ A0}$		
	(b) $(x-11)^2 + (y-5\sqrt{3})^2 = 16 \text{ M1A0}$		

Question Number	Scheme			Marks
10. (a)	or $\left(9x \times 4x - \frac{1}{2}4x \times (9x - 6x)\right)$ or $36x^2 - 6x^2$ M1 but the A1 can be withheld if there are any slips.		M1A1 cso	
	$\Rightarrow 30x^2y = 9600 \Rightarrow y = \frac{9600}{30x^2} \Rightarrow y = \frac{320}{x^2} *$		t proof with at least one e step and no errors seen. quired.	
				[2]
(b)	$\left(S = \right)\frac{1}{2}\left(9x + 6x\right)4x + \frac{1}{2}\left(9x + 6x\right)4x + 6xy + 9xy + 5xy + 4xy$			M1A1
	M1: An attempt to find the area of six faces of the prism. The 2 trapezia may be combined as $(9x + 6x)4x$ or $60x^2$ and the 4 other faces may be combined as $24xy$ but all six faces must be included. There must be attempt at the areas of two trapezia that are dimensionally correct. A1: Correct expression in any form. Allow just $(S =) 60x^2 + 24xy$ for M1A1			
	$y = \frac{320}{x^2} \Longrightarrow (S =) 30x^2 + 3$	$30x^2 + 24x \bigg(-$	$\left(\frac{320}{x^2}\right)$	M1
	Substitutes $y = \frac{320}{x^2}$ into their expression for <i>S</i> (may be done earlier). <i>S</i> should have at least one x^2 term and one <i>xy</i> term but there may be other terms which may be dimensionally incorrect.			
	So, $(S =) 60x^2 + \frac{7680}{x} *$		Correct solution only. " $S =$ " is not required here.	A1* cso
				[4]

10(c)	$\frac{\mathrm{d}S}{\mathrm{d}x} = 120x - 7680x^{-2} \left\{ = 120x - \frac{7680}{x^2} \right\}$	M1: Either $60x^2 \rightarrow 120x$ or $\frac{7680}{x} \rightarrow \frac{\pm \lambda}{x^2}$ A1: Correct differentiation (need not be	M1
		A1: Correct differentiation (need not be simplified).	A1 aef
	$120x - \frac{7680}{x^2} = 0$ $\Rightarrow x^3 = \frac{7680}{120}; = 64 \Rightarrow x = 4$	M1: $S' = 0$ and "their $x^3 = \pm$ value" or "their $x^{-3} = \pm$ value" Setting their $\frac{dS}{dx} = 0$ and "candidate's ft <i>correct</i> power of $x = a$ value". The power of x must be consistent with their differentiation. If inequalities are used this mark cannot be gained until candidate states value of x or S from their x without inequalities. $S' = 0$ can be implied by $120x = \frac{7680}{x^2}$. Some may spot that $x = 4$ gives S' = 0 and provided they clearly show $S'(4) = 0allow this mark as long as S' is correct. (If S'is incorrect this method is allowed if theirderivative is clearly zero for their value of x)A1: x = 4 only (x^3 = 64 \implies x = \pm 4 scores A0)Note that the value of x is not explicitly requiredso the use of x = \sqrt[3]{64} to give S = 2880 wouldimply this mark.$	M1A1 cso
	Note some candidates stop here and do	b not go on to find S – maximum mark is $4/6$	
	$\{x=4,\}$	Substitute candidate's value of $x (\neq 0)$ into a formula for <i>S</i> . Dependent on both previous M	dd M1
	$S = 60(4)^2 + \frac{7680}{4} = 2880 \ (\text{cm}^2)$	marks. 2880 cso (Must come from correct work)	A1 cao and cso
		2000 CS0 (Whast come in our correct work)	
			[6]

10(d)	$\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$ $\Rightarrow Minimum$ $\frac{d^2S}{dx^2} = 120 + \frac{15360}{x^3} > 0$ $\Rightarrow Minimum$ $M1: Attempt S''(x^n \to x^{n-1}) and considers$ sign. This mark requires an attempt at the second derivative and some consideration of its sign. There does not necessarily need to be any substitution. An attempt to solve S'' = 0 is M0 $A1: 120 + \frac{15360}{x^3} and > 0 and conclusion.$ Requires a <u>correct</u> second derivative of $120 + \frac{15360}{x^3} (need not be simplified) and a valid reason (e.g. > 0), and conclusion. Only follow through a correct second derivative i.e. x may be incorrect but must be positive$	M1A1ft
	and/or S" may have been <u>evaluated</u> incorrectly.	
	A correct S" followed by $S''("4") = "360"$ therefore minimum would score no marks in (d)	
	A correct S'' followed by $S''("4") = "360"$ which is positive therefore minimum would score	
	both marks	[0]
	Note neutra (a) and (d) can be maying together	[2]
	Note parts (c) and (d) can be marked together.	Total 14

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$