Question	Scheme	Marks	AOs
9(a)	Equation of motion for P	M1	3.3
	$2 m g-T=2 m^{\prime} \frac{5 g}{7}$	A1	1.1b
	$T=\frac{4 m g}{7}$	A1	1.1b
		(3)	
(b)	Since the string is modelled as being inextensible	B1	3.4
		(1)	
(c)	Equation of motion for Q OR for whole system	M1	3.3
	$T-k m g=k m^{\prime} \frac{5 g}{7} \quad$ OR $\quad 2 m g-k m g=(k m+2 m) \frac{5 g}{7}$	A1	1.1b
	$\frac{4 m g}{7}-k m g=k m^{\prime} \frac{5 g}{7}$ oe and solve for k	DM1	1.1b
	$k=\frac{1}{3}$ or 0.333 or better	A1	1.1b
		(4)	
(d)	e.g The model does not take account of the mass of the string (see notes below for alternatives)	B1	3.5b
		(1)	
(9 marks)			

Notes: Condone both equations of motion appearing in (a) if used in (c)

(a)

M1: Resolving vertically for P with usual rules, correct no. of terms but condone sign errors and a does not need to be substituted (N.B. inconsistent omission of m is M0). Allow $m a$ on RHS for M1
A1: A correct equation (allow if they use 7 instead of $\frac{5 g}{7}$)
A1: A correct answer of form $c m g$, where $c=\frac{4}{7}$ oe or 0.57 or better
(b)

B1: String is inextensible. N.B. B0 if any extras (wrong or irrelevant) given

(c)

M1: Resolving vertically for Q or for a whole system equation, with usual rules, correct no. of terms but condone sign errors and neither T nor a does need to be substituted
N.B. Omission or extra g in a resolution is an accuracy error not a method error

In 2(a), use the mass which appears in the ' $m a$ ' term of an equation of motion, to identify which particle that equation of motion applies to.

Question	Scheme	Marks	AOs	Notes
2(a)	Equation of motion for Q	M1	3.3	Equation of motion for Q with correct no. of terms, condone sign errors.
	$0.6 \mathrm{~g}-\mathrm{T}=0.6 a$	A1	1.1b	A correct equation
	Equation of motion for P	M1	3.3	Equation of motion for Q with correct no. of terms, condone sign errors.
	$T=0.8 a$	A1	1.1b	A correct equation
	$a=4.2\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ *	A1*	2.2a	Given acceleration obtained correctly. You must see an equation in a only before reaching $a=4.2$
		(5)		N.B. if they just use the whole system equation: $0.6 g=1.4 a$, can only score max M1A1M0A0A0 N.B. Use of $g=9.81$ or 10 loses final A mark only. N.B. Complete verification, using both equations, can score full marks.

(b)	$0.4=\frac{1}{2} \times 4.2 \times t_{1}^{2} \quad$ or e.g. they may find v first and then use $v=4.2 t_{1}$	M1	2.1	Complete method (they may use more than one suvat equation) to find time for Q to hit the floor (M0 if 0.4 not used as distance moved and/or if 4.2 is not used as acceleration and this applies to finding v as well if they use v to find t_{1})
	$t_{1}=0.436(4357 \ldots .$.$) Allow 0.43,0.44,0.436$, or better, or any surd form e.g. $\frac{2}{\sqrt{21}}$	A1	1.1b	See alternatives
	$\begin{aligned} & v=4.2 \times t_{1} \quad \text { or } \quad v=\sqrt{2 \times 4.2 \times 0.4} \quad \text { or } \quad 0.4=\frac{(0+v)}{2} \times t_{1} \\ & (v=1.8330 \ldots) \end{aligned}$	M1	3.4	Complete method to find speed of Q as it hits the floor (M0 if 0.4 not used as distance moved and/or if 4.2 is not used as acceleration and this applies to finding t_{1} as well if they use t_{1} to find v)
	$t_{2}=\frac{1.5-0.4}{v}$	M1	1.1b	Uses distance/speed to find time for P to hit the pulley after Q has hit the floor. N.B. This is independent of previous M mark.
	Complete strategy to solve the problem by finding the sum of the two times $t_{1}+t_{2}$	DM1	3.1b	Complete method to solve the problem by finding and adding the two required times, dependent on previous three M marks
	1.0 (s) or 1.04 (s)	A1	1.1b	
		(6)		
(c)	e.g. rope being light; rope being inextensible; pulley being smooth; pulley being small; balls being particles	B1	3.5b	Clear statement. Allow negatives of these i.e. the rope may not be light, the rope may not be inextensible etc Must be a limitation of the model stated in the question Penalise incorrect or irrelevant extras
		(1)		B0 for: Air resistance, table being smooth
(12 marks)				

Question	Scheme	Marks	AOs
9(a)(i)	Equation of motion for A	M1	3.3
	$T-12.7=2.5 a$	A1	1.1b
(ii)	Equation of motion for B	M1	3.3
	$1.5 g-T=1.5 a$	A1	1.1b
		(4)	
(b)	Solving two equations for a	M1	1.1b
	$a=0.5$	A1	1.1b
		(2)	
(c)	$1=\frac{1}{2} \leftarrow 0.5 t^{2}$	M1	3.4
	$t=2$ seconds	A1ft	1.1b
		(2)	
(d)	Valid improvement, see below in notes	B1	3.5c
	Valid improvement, see below in notes	B1	3.5c
		(2)	
(10 marks)			

Question Number	Scheme	Marks
	$\begin{gathered} (-10 \mathbf{i}+a \mathbf{j})+(b \mathbf{i}-5 \mathbf{j})+(2 a \mathbf{i}+7 \mathbf{j})=3(3 \mathbf{i}+4 \mathbf{j}) \\ a-5+7=12 \Rightarrow a=10 \\ -10+b+2 a=9 \Rightarrow b=-1 \end{gathered}$	M1 M1 A1 M1 A1 (5)
(b)	$\begin{aligned} 20 \mathbf{i}+20 \mathbf{j} & =\mathbf{u}+4(3 \mathbf{i}+4 \mathbf{j}) \\ \mathbf{u} & =(8 \mathbf{i}+4 \mathbf{j}) \\ u & =\sqrt{8^{2}+4^{2}}=\sqrt{80}=8.9 \text { (or better) } \end{aligned}$	$$
	Notes	9
2(a)	First M1 for applying $\mathbf{F}=m \mathbf{a}$; need all terms but allow slips and allow m instead of 3 Second M1 (independent but M0 if they have $\mathbf{0}$ instead of ma) for equating coefficients of j First A1 for $a=10$ Third M1 (independent but M0 if they have $\mathbf{0}$ instead of ma) for equating coefficients of \mathbf{i} Second A1 for $b=-1$	
(b)	First M1 for applying $\mathbf{v}=\mathbf{u}+t \mathbf{a}$; need all terms and must be vector \mathbf{u} First A1 for $8 \mathbf{i}+4 \mathbf{j}$ Second M1 (independent) for finding magnitude of their vector \mathbf{u} Second A1 for $\sqrt{ } 80$ or 8.9 or better	

WME01 Mechanics M1

Mark Scheme

Question	Scheme	Marks	Notes
1.	Vertically: $T \cos 40+F \cos 60=5$	M1	First equation seen for resolution of forces. No missing/additional terms Condone sin/cos confusion and sign error(s) 5 g in place of 5 is an accuracy error T must link with 40 or 50 and F with 60 or 30
		A1	Correct equation
	Horizontally: $T \cos 50=F \cos 30$	M1	Second equation seen for resolution of forces No missing/additional terms Condone sin/cos confusion and sign error(s) 5 g in place of 5 is an accuracy error T must link with 40 or 50 and F with 60 or 30
		A1	Correct equation
	Perpendicular to line of F : $T \cos 10=5 \cos 30$		
	Perpendicular to line of T : $F \cos 10=5 \cos 50$		
	Solve for T or F	dM1	Dependent on using equation(s) that scored M $\operatorname{mark}(\mathrm{s})$
	$T=4.3969 . . \mathrm{N}=4.4 \mathrm{~N}$ (or better)	A1	One correct
	$F=3.263 \ldots . \quad=3.3 \mathrm{~N}($ or better $)$	A1	Both correct
		[7]	
1 alt			Solution using Lami's theorem Or a triangle of forces
	$\frac{5}{\sin 100}=\frac{F}{\sin 140}=\frac{T}{\sin 120}$	M1	One pair including $\frac{5}{\sin 100}$ or $\frac{5}{\sin 80}$ Incorrect pairing of forces and angles is M0
		A1	Two fractions correct
		M1	Second pair of fractions
		A1	All correct
	Solve for T or F	dM1	Dependent on using equation(s) that scored M mark(s)
	$T=4.3969 . . \mathrm{N}=4.4 \mathrm{~N}$ (or better)	A1	One correct
	$F=3.263 \ldots . \quad=3.3 \mathrm{~N}($ or better $)$	A1	Both correct

Question Number	Scheme	Marks	Notes
3.(a)	$7^{2}=2 \times 9.8 h$	M1	Use of $v^{2}=u^{2}+2 a s$ with $u=0, v=7$ or alternative complete method to find h.
	$h=2.5$	A1	Condone $h=-2.5$ in the working but the final answer must be positive.
		(2)	
3.(b)	$9 \times 7=10.5 u$	M1	Use CLM to find the speed of the blocks after the impact. Condone additional factor of g throughout.
	$u=6$	A1	
	$0^{2}=6^{2}-2 a \times 0.12$	M1	Use of $v^{2}=u^{2}+2 a s$ with $u=6, v=0$ Allow for their u and $v=0$ Allow for $u=7, v=0$ Accept alternative suvat method to form an equation in a. Condone use of 12 for 0.12
		A1	Correctly substituted equation in a with $u=6, s=0.12$ (implied by $a=150$)
	$(\downarrow) 10.5 g-R=10.5 \times(-\mathrm{a})$	M1	Use of $F=m a$ with their $a \neq \pm \mathrm{g}$ Must have all 3 terms and 10.5 Condone sign error(s)
	(\downarrow) $10.5 g-R=10.5 \times(-150)$	A1	Unsimplified equation with a substituted and at most one error (their a with the wrong sign is 1 error)
		A1	Correct unsimplified equation with a substituted
	$R=1680$ or 1700	A1	
		(8)	
	Alternative for the last 6 marks:		
	$\frac{1}{2} \times 10.5 \times 6^{2}+10.5 \times 9.8 \times 0.12=R \times 0.12$	M2	Energy equation (needs all three terms)
		A3	-1 each error A1A1A0 for 1 error, A1A0A0 for 2 errors
	$R=1680$ or 1700	A1	
		[10]	

Question Number	Scheme	Marks	Notes
(c)	String slack: accel of $P($ up plane $)=-g \cos 60=-\frac{1}{2} g$	B1	
	$0=\frac{2.4 g}{5}-g s$	M1	Use of $v^{2}=u^{2}+2 a s$ or equivalent for their acceleration $\neq \frac{2 g}{5}$
	$s=\frac{2.4 g}{5} \times \frac{1}{g}=\frac{2.4}{5}=0.48$	A1	
	Total dist $=1.08 \mathrm{~m}$	A1ft (4)	$0.6+\text { their } 0.48$
(d)	$\begin{aligned} & 0=\frac{2}{5} \sqrt{3 g}-\frac{g}{2} t \quad(0=2.17-4.9 t) \\ & t=\frac{4 \sqrt{3 g}}{5 g}=0.4426 \ldots \end{aligned}$	M1	Use of $v=u+a t$ or equivalent with their acceleration $\neq \frac{2 g}{5}$ to find t.
	$=0.44$ or 0.443	A1 (2)	only
		[16]	

January 2018
Mechanics 1 - WME01
Mark Scheme

Question Number	Scheme	Marks
1		
	N.B. If they assume that the tensions are the same, can score max:M0A0M1A0DM0A0A0. If they use the same angles, can score max: M1A0M1A0DM0A0A0	
	Resolve parallel to $A B: \quad T_{A} \cos 30=T_{B} \cos 45$	M1A1
	Resolve perpendicular to $A B$: $W=T_{A} \sin 30+T_{B} \sin 45$	M1A1
	Solve for T_{A} or T_{B}	DM1
	$T_{A}=\frac{2}{1+\sqrt{3}} W(=0.73 \mathrm{~W})$ (or better)	A1
	$T_{B}=\frac{\sqrt{6}}{1+\sqrt{3}} W(=0.90 W)($ or better $)$	A1
		(7)
	Alternative (triangle of forces):	
	Sine rule for $T_{A}: \frac{T_{A}}{\sin 45}=\frac{W}{\sin 75} \quad$ M1A1	
	Sine rule for $T_{B}: \frac{T_{B}}{\sin 60}=\frac{W}{\sin 75} \quad$ M1A1	
	Solve for T_{A} or $T_{B}: T_{A}=0.73 W$ (or better) DM1A1	
	$T_{B}=0.90 \mathrm{~W}$ (or better) A1	
	(7)	
		[7]

Question Number	Scheme	Marks
7 a	Motion of P : $\quad T-3 g=3 a$	M1
	$33.6-3 g=3 a$	A1
	$a=1.4\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \quad *$ Given Answer*	A1
		(3)
7b	Motion of $Q: \quad m g-T=m a$	M1
	$m g-33.6=1.4 m$	A1
	$m=4$	A1
		(3)
7c	Use of $s=(u t+) \frac{1}{2} a t^{2}: \quad 10.5=\frac{1}{2} \times 1.4 \times t^{2}$	M1A1
	$T_{1}=\sqrt{15}=3.9$ or better	A1
		(3)
7d	Use $v^{2}=\left(u^{2}+\right) 2 a s$ to find speed of particles when Q hits ground: $v=\sqrt{2 \times 1.4 \times 10.5}(=\sqrt{29.4})$	M1
	Use $v=u+a t$ to find additional time for P to come to rest: $0=\sqrt{29.4}-g t$	DM1
	Total time : $T_{2}=\sqrt{15}+\frac{\sqrt{29.4}}{9.8}=4.4$ or 4.43	A1
		(3)
7 e		B1 Shape DB1 ft their values for 5.4, -5.4 3.9, 4.4 (or $\mathrm{T}_{1} \mathrm{~T}_{2}$)
		[14]

Question Number	Scheme	Marks
	Notes	
7 a	M1 for equation of motion for P with T not substituted, condone sign errors First A1 for a correct equation in a only (allow $\pm a$) Second A1 for given answer (units not needed)	
7b	M1 for equation of motion for Q with neither T nor a substituted, condone sign errors First A1 for a correct equation in m only Second A1 for $m=4$ N.B. Whole system equn: $m g-3 g=\mathrm{a}(m+3)$ may be used	
7c	M1 for a complete method to find T_{1} (M0 if g used) First A1 for a correct equation (or equations) Second A1 for $\sqrt{ } 15,3.9$ or better $v=\sqrt{ } 29.4$ (5.4) may be found in this part but only gets credit if it appears in part (d)	
7d	First M1 for a complete method to find the speed of particles when Q hits the ground (M0 if using g) Second M1 dependent on first M1 for a complete method to find the additional time for P to come to rest (must be using g) A1 for 4.4 or 4.43	
7 e	First B1 (generous) for shape. Graph does not need to go down as far as it goes up and ignore gradients. (B0 if it goes outside the range $0 \leq t \leq T_{3}$ or if a continuous vertical line is included) Second B1, dependent on first B1, ft on their $\sqrt{ } 29.4, T_{1}$ and T_{2} Allow T_{1} and T_{2} entered on the graph (rather than their numerical values)	

Question	Scheme	Marks
1(a)	$\text { For truck: } \begin{aligned} D-600-400 & =2400 \times 0.5 \\ D & =2200 \mathrm{~N} \end{aligned}$	M1 A1 A1 (3)
(b)	For both: $D-600=(M+2400) \times 0.5$ (or trailer: $600-200=\mathrm{M} \times 0.5)$ $M=800 \quad M=800$	M1 A1 A1 (3)
(c)	Truck and trailer have same acceleration.	B1 (1) 7
	Notes Can mark (a) and (b) 'together' if it helps the candidate, provided no wrong working seen.	
1(a)	M1 for NL2 for truck only (or for a complete method if they find M first), with correct no. of terms, in D only. (M0 if 600 or 400 is replaced by 200) First A1 for a correct equation . Second A1 for 2200 (N).	
1(b)	M1 for NL2 for whole system or trailer only, with correct no. of terms. First A1 for a correct equation. (Allow ' D ' or their D) Second A1 for 800. N.B. In both parts of this question use the mass which is being used in their equation to guide you as to which part of the system is being considered.	
1(c)	B0 if extras included. E.g if 'tension is same' is included. B1 Must include 'truck and trailer' or 'both particles' or 'accln is same throughout the system' B0 for 'accln is same'	

