2. Relative to a fixed origin O,

the point A has position vector $(2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$,

the point B has position vector $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$,

and the point C has position vector $(a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k})$, where a is a constant and a < 0

D is the point such that $\overrightarrow{AB} = \overrightarrow{BD}$.

(a) Find the position vector of D.

(2)

Given $|\overrightarrow{AC}| = 4$

(b) find the value of a.

(3)

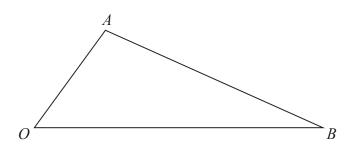


Figure 7

Figure 7 shows a sketch of triangle OAB.

The point C is such that $\overrightarrow{OC} = 2\overrightarrow{OA}$.

The point M is the midpoint of AB.

The straight line through C and M cuts OB at the point N.

Given $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$

(a) Find \overrightarrow{CM} in terms of **a** and **b**

(b) Show that $\overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$, where λ is a scalar constant.

(2)

(c) Hence prove that ON: NB = 2:1

(2)

(2)

- 3. Relative to a fixed origin O
 - point A has position vector $2\mathbf{i} + 5\mathbf{j} 6\mathbf{k}$
 - point B has position vector $3\mathbf{i} 3\mathbf{j} 4\mathbf{k}$
 - point C has position vector $2\mathbf{i} 16\mathbf{j} + 4\mathbf{k}$
 - (a) Find \overrightarrow{AB}

(2)

(b) Show that quadrilateral *OABC* is a trapezium, giving reasons for your answer.

(2)

6

2. Relative to a fixed origin, points P, Q and R have position vectors \mathbf{p} , \mathbf{q} and \mathbf{r} respectively.

Given that

- P, Q and R lie on a straight line
- Q lies one third of the way from P to R

show that

$$\mathbf{q} = \frac{1}{3}(\mathbf{r} + 2\mathbf{p})$$

(3)

14. ABCD is a parallelogram with AB parallel to DC and AD parallel to BC. The position vectors of A, B, C, and D relative to a fixed origin O are **a**, **b**, **c** and **d** respectively.

Given that

$$a = i + j - 2k$$
, $b = 3i - j + 6k$, $c = -i + 3j + 6k$

(a) find the position vector **d**,

(3)

(b) find the angle between the sides AB and BC of the parallelogram,

(4)

(c) find the area of the parallelogram ABCD.

(2)

The point E lies on the line through the points C and D, so that D is the midpoint of CE.

(d) Use your answer to part (c) to find the area of the trapezium ABCE.

(2)

 $A \longrightarrow B$

Figure 2

Figure 2 shows a sketch of a triangle ABC.

Given
$$\overrightarrow{AB} = 2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$$
 and $\overrightarrow{AC} = 5\mathbf{i} - 6\mathbf{j} + \mathbf{k}$,

(a) find the size of angle CAB, giving your answer in degrees to 2 decimal places,

(3)

(b) find the area of triangle ABC, giving your answer to 2 decimal places.

(2)

Using your answer to part (b), or otherwise,

(c) find the shortest distance from A to BC, giving your answer to 2 decimal places.

(3)

